Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Dicke effect in a quantum wire with side-coupled quantum dots

dc.contributor.authorOrellana, P. A.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorDíez Alcántara, Eduardo
dc.date.accessioned2023-06-20T10:48:04Z
dc.date.available2023-06-20T10:48:04Z
dc.date.issued2006-08
dc.description© 2006 Elsevier B.V. All rights reserved. P. A. O. would like to thank financial support from Millennium Science Nucleus Condensed Matter Physics and FONDECYT under grants Nos. 1020269 and 7020269. Work in Madrid was supported by MCyT (MAT2003-01533). E. Diez acknowledge support by Junta de Castilla y León (SA007B05) and MEC (Ramón y Cajal and FIS2005-01375). Addition ally, P. A. O. would like to thank the hospitality of Departamento de Física de Materiales (UCM) and Departamento de F´ısica Fundamental (USAL) during his visits.
dc.description.abstractA system of an array of side-coupled quantum dots attached to a quantum wire is studied theoretically. Transport through the quantum wire is investigated by means of a noninteracting Anderson tunneling Hamiltonian. Analytical expressions of the transmission probability and phase are given. The transmission probability shows an energy spectrum with forbidden and allowed bands that depends on the up-down asymmetry of the system. in up-down symmetry only the gap survives, and in up-down asymmetry an allowed band is formed. We show that the allowed band arises by the indirect coupling between the up and down quantum dots. In addition, the band edges can be controlled by the degree of asymmetry of the quantum dots. We discuss the analogy between this phenomenon with the Dicke effect in optics.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMCyT
dc.description.sponsorshipJunta de Castilla y León
dc.description.sponsorshipMEC
dc.description.sponsorshipMillennium Science Nucleus Condensed Matter Physics
dc.description.sponsorshipFONDECYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27365
dc.identifier.doi10.1016/j.physe.2006.06.017
dc.identifier.issn1386-9477
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.physe.2006.06.017
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51247
dc.issue.number1
dc.journal.titlePhysica E: Low-dimensional Systems and Nanostructures
dc.language.isoeng
dc.page.final130
dc.page.initial126
dc.publisherElsevier Science BV
dc.relation.projectIDMAT2003-01533
dc.relation.projectIDSA007B05
dc.relation.projectIDRamón y Cajal
dc.relation.projectID1020269
dc.relation.projectID7020269
dc.relation.projectIDFIS2005-01375
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordSystems
dc.subject.ucmFísica de materiales
dc.titleDicke effect in a quantum wire with side-coupled quantum dots
dc.typejournal article
dc.volume.number35
dcterms.references[1] A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, Phys. Rev. Lett. 87, 256802 (2001). [2] A. W. Holleitner, R. H. Blick, A. K. Huttel, K. Eber, and J. P. Kotthaus, Science 297, 70 (2002). [3] W. Z. Shangguan, T. C. Au Yeung, Y. B. Yu, and C. H. Kam, Phys. Rev. B 63, 235323 (2001). [4] A. I. Yanson, G. Rubio-Bollinger, H. E. van den Brom, N. Agraít, and J.M. van Ruitenbeek, Nature (London) 395, 780 (1998). [5] A. T. Tilke, F. C. Simmel, H. Lorenz, R. H. Blick, and J. P. Kotthaus, Phys. Rev. B. 68 075311 (2003). [6] R. H. M. Smit, C. Untiedt, G. Rubio-Bollinger, R. C. Segers, and J. M. van Ruitenbeek, Phys. Rev. Lett. 91, 076805 (2003). [7] A. Oguri, Phys. Rev. B 63 115305 (2001). [8] Z. Y. Zeng and F. Claro, Phys. Rev. B 65, 193405 (2002). [9] T-S. Kim and S. Hershfield, Phys. Rev. B 65, 214526 (2002). [10] P. A. Orellana, F. Domínguez-Adame, I. Gómez, and M. L. Ladrón de Guevara, Phys. Rev. B 67, 085321 (2003). [11] P. A. Orellana and F. Dom´ınguez-Adame, phys. stat. sol. (a) 203, 1178 (2006). [12] P. A. Orellana, M. L. Ladr´on de Guevara, M. Pacheco, and A. Latgé, Phys. Rev. B Phys. Rev. B 68, 195321 (2003) , P. A. Orellana and M. Pacheco Phys. Rev. B 71, 235330 (2005). [13] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman Phys. Rev. Lett. 74, 4047 (1995). [14] R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, Hadas Shtrikman, Nature 385 417 (1997). [15] M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto, and Y. Iye, Phys. Rev. Lett. 95, 066801 (2005). [16] R. H. Dicke, Phys. Rev. 89, 472 (1953). [17] P. A. Orellana, M. L. Ladr´on de Guevara, and F. Claro, Phys. Rev. B 70, 233315 (2005). [18] T. Brandes, Phys. 408, 315 (2005). [19] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, cam bridge, 1997).
dspace.entity.typePublication
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublicationbc6a5675-68c7-4ee0-b20c-8560937c1c25
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame43preprint.pdf
Size:
457.24 KB
Format:
Adobe Portable Document Format

Collections