Multilayer analysis of population diversity in grammatical evolution for symbolic regression

dc.contributor.authorKronberger, Gabriel
dc.contributor.authorColmenar, Manuel
dc.contributor.authorWinkler, Stephan
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2025-01-30T13:21:09Z
dc.date.available2025-01-30T13:21:09Z
dc.date.issued2020
dc.description.abstractIn this paper, we analyze the population diversity of grammatical evolution (GE) on multiple levels of genetic information: chromosome diversity, expression diversity, and output diversity. Thereby, we use a tree-similarity metric from tree-based GP literature to determine similarity of expression trees generated in GE. The similarity of outputs is determined via their correlation.We track the pairwise similarities for all individualswithin a generation on all three levels and track the distribution of similarity values over generations.We demonstrate the analysis method using four symbolic regression problem instances and find that the visualization highlights some issues that can occur when using GE such as: large groups of individuals with highly similar outputs, a high fraction of trees with constant outputs, or short and highly similar trees in the early stages of the GE run. Especially in the early phases of GE, we see that a large subset of the population represents equivalent expressions. In early stages, rather short expressions are produced leaving large parts of the chromosome unexpressed. More complex expressions can be derived only after GE has successfully evolved well working beginnings of chromosomes
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1007/s00500-020-05062-9
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s00500-020-05062-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117301
dc.journal.titleSoft Computing
dc.language.isoeng
dc.page.final11295
dc.page.initial11283
dc.publisherSpringer Nature
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleMultilayer analysis of population diversity in grammatical evolution for symbolic regression
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number24
dspace.entity.typePublication
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscovery981f825f-2880-449a-bcfc-686b866206d0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00500-020-05062-9.pdf
Size:
2.49 MB
Format:
Adobe Portable Document Format

Collections