Estimating Engel curves: a new way to improve the SILC-HBS matching process using GLM methods.

dc.contributor.authorLópez Laborda, Julio
dc.contributor.authorMarín González, Carmen
dc.contributor.authorOnrubia Fernández, Jorge
dc.date.accessioned2026-01-26T12:47:40Z
dc.date.available2026-01-26T12:47:40Z
dc.date.issued2020
dc.description.abstractMicrodata are required to evaluate the distributive impact of the taxation system as a whole (direct and indirect taxes) on individuals or households. However, in European Union countries this information is usually distributed into two separate surveys: the Household Budget Surveys (HBS), including total household expenditure and its composition, and EU Statistics on Income and Living Conditions (EU-SILC), including detailed information about households' income and direct (but not indirect) taxes paid. We present a parametric statistical matching procedure to merge both surveys. For the first stage of matching, we propose estimating total household expenditure in HBS (Engel curves) using a GLM estimator, instead of the traditionally used OLS method. It is a better alternative, insofar as it can deal with the heteroskedasticity problem of the OLS estimates, while making it unnecessary to retransform the regressors estimated in logarithms. In addition, when an error term is added to the deterministic imputation of expenditure in the EU-SILC, we propose replacing the usual Normal distribution of the error with a Chi-square type, which allows a better approximation to the original expenditures variance in the HBS. An empirical analysis is provided using Spanish surveys for years 2012-2016.In addition, to test the robustness of the proposed methodology, we extend the empirical analysis to the rest of the European Union countries, using the micro data from the surveys provided by Eurostat (EU-SILC, 2011; HBS, 2010).
dc.description.departmentDepto. de Economía Aplicada, Pública y Política
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía (España)
dc.description.statuspub
dc.identifier.citationLópez-Laborda, J., Marín-González, C., & Onrubia-Fernández, J. (2021). Estimating Engel curves: a new way to improve the SILC-HBS matching process using GLM methods. Journal of Applied Statistics, 48(16), 3233–3250. https://doi.org/10.1080/02664763.2020.1796933
dc.identifier.doi10.1080/02664763.2020.1796933
dc.identifier.essn1360-0532
dc.identifier.issn0266-4763
dc.identifier.officialurlhttps://doi.org/10.1080/02664763.2020.1796933
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130993
dc.issue.number16
dc.journal.titleJournal of Applied Statistics
dc.language.isoeng
dc.publisherTaylor & Francis
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ECO2017-87862-P/ES/CRECIMIENTO Y POLITICAS PUBLICAS (VI)/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//ECO2016-76506-C4-3-R/ES/POLITICAS REDISTRIBUTIVAS, DESIGUALDAD Y POBREZA MULTIDIMENSIONAL/
dc.rights.accessRightsopen access
dc.subject.jelC15
dc.subject.jelC51
dc.subject.jelC52
dc.subject.keywordStatistical matching surveys
dc.subject.keywordEngel curve
dc.subject.keywordHousehold expenditure
dc.subject.keywordHeteroskedasticity
dc.subject.keywordGeneralized Linear Models (GLM)
dc.subject.ucmCiencias Sociales
dc.subject.unesco53 Ciencias Económicas
dc.subject.unesco12 Matemáticas
dc.titleEstimating Engel curves: a new way to improve the SILC-HBS matching process using GLM methods.
dc.typeworking paper
dc.type.hasVersionAO
dc.volume.number48
dspace.entity.typePublication
relation.isAuthorOfPublicationbd10ccec-042c-45bf-82f5-9da4fe71dffd
relation.isAuthorOfPublication.latestForDiscoverybd10ccec-042c-45bf-82f5-9da4fe71dffd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Estimating Engel curves.pdf
Size:
353.77 KB
Format:
Adobe Portable Document Format
Description:
Preprint