Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Prime Ideals In Rings Of Semialgebraic Functions

dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2023-06-20T16:52:11Z
dc.date.available2023-06-20T16:52:11Z
dc.date.issued1993
dc.description.abstractIt is proved that if p is a prime ideal in the ring S{M) of semialgebraic functions on a semialgebraic set M, the quotient field of S(M)/p is real closed. We also prove that in the case where M is locally closed, the rings S(M) and P(M)—polynomial functions on M—have the same Krull dimension. The proofs do not use the theory of real spectra.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15368
dc.identifier.doi10.2307/2160055
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.ams.org/journals/proc/1993-118-04/S0002-9939-1993-1140669-6/S0002-9939-1993-1140669-6.pdf
dc.identifier.relatedurlhttp://www.ams.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57279
dc.issue.number4
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final1041
dc.page.initial1037
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordPrime Ideal In The Ring Of Semialgebraic Functions
dc.subject.keywordKrull Dimension
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn Prime Ideals In Rings Of Semialgebraic Functions
dc.typejournal article
dc.volume.number118
dcterms.referencesJ. Bochnak, M. Coste, and M. F. Roy, Geometric algebrique reelle, Ergeb. Math. Grenzgeb.(3), vol. 12, Springer-Verlag, Berlin and New York, 1987. M. Carral and M. Coste, Normal spectral spaces and their dimensions, J. Pure Appl. Algebra 301 (1983), 227-235. 3. J. M. Gamboa and J. M. Ruiz, On rings of semialgebraic functions, Math. Z. 206 (1991), 527-532. M. Henriksen and J. R. Isbell, On the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 4 (1953), 431-434. J. R. Isbell, More on the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 5(1954), 439. T. Recio, Una descomposicion de un conjunlo semialgebraico, Proc. A.M.E.L. Mallorca, 1977. J. J. Risler, Le theoreme des zeros en geometries algebrique et analytique relies, Bull. Soc. Math. France 104 (1976), 113-127. J. M. Ruiz, Cones locaux et completions, C.R. Acad. Sci. Paris Ser. I Math. 302 (1986), 67-69. N. Schwartz, The basic theory of real closed spaces, Mem. Amer. Math. Soc, no. 397, Amer. Math. Soc, Providence, RI, 1989.
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
25.pdf
Size:
485.72 KB
Format:
Adobe Portable Document Format

Collections