On Prime Ideals In Rings Of Semialgebraic Functions
dc.contributor.author | Gamboa Mutuberria, José Manuel | |
dc.date.accessioned | 2023-06-20T16:52:11Z | |
dc.date.available | 2023-06-20T16:52:11Z | |
dc.date.issued | 1993 | |
dc.description.abstract | It is proved that if p is a prime ideal in the ring S{M) of semialgebraic functions on a semialgebraic set M, the quotient field of S(M)/p is real closed. We also prove that in the case where M is locally closed, the rings S(M) and P(M)—polynomial functions on M—have the same Krull dimension. The proofs do not use the theory of real spectra. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15368 | |
dc.identifier.doi | 10.2307/2160055 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.officialurl | http://www.ams.org/journals/proc/1993-118-04/S0002-9939-1993-1140669-6/S0002-9939-1993-1140669-6.pdf | |
dc.identifier.relatedurl | http://www.ams.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57279 | |
dc.issue.number | 4 | |
dc.journal.title | Proceedings of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 1041 | |
dc.page.initial | 1037 | |
dc.publisher | American Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Prime Ideal In The Ring Of Semialgebraic Functions | |
dc.subject.keyword | Krull Dimension | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | On Prime Ideals In Rings Of Semialgebraic Functions | |
dc.type | journal article | |
dc.volume.number | 118 | |
dcterms.references | J. Bochnak, M. Coste, and M. F. Roy, Geometric algebrique reelle, Ergeb. Math. Grenzgeb.(3), vol. 12, Springer-Verlag, Berlin and New York, 1987. M. Carral and M. Coste, Normal spectral spaces and their dimensions, J. Pure Appl. Algebra 301 (1983), 227-235. 3. J. M. Gamboa and J. M. Ruiz, On rings of semialgebraic functions, Math. Z. 206 (1991), 527-532. M. Henriksen and J. R. Isbell, On the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 4 (1953), 431-434. J. R. Isbell, More on the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 5(1954), 439. T. Recio, Una descomposicion de un conjunlo semialgebraico, Proc. A.M.E.L. Mallorca, 1977. J. J. Risler, Le theoreme des zeros en geometries algebrique et analytique relies, Bull. Soc. Math. France 104 (1976), 113-127. J. M. Ruiz, Cones locaux et completions, C.R. Acad. Sci. Paris Ser. I Math. 302 (1986), 67-69. N. Schwartz, The basic theory of real closed spaces, Mem. Amer. Math. Soc, no. 397, Amer. Math. Soc, Providence, RI, 1989. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 | |
relation.isAuthorOfPublication.latestForDiscovery | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 |
Download
Original bundle
1 - 1 of 1