Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New Results on the Burgers and the Linear Heat Equations in Unbounded Domains

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorGonzález, S.
dc.date.accessioned2023-06-20T10:54:22Z
dc.date.available2023-06-20T10:54:22Z
dc.date.issued2005
dc.description.abstractWe consider the Burgers equation and prove a property which seems to have been unobserved until now: there is no limitation on the growth of the nonnegative initial datum u0(x) at infinity when the problem is formulated on unbounded intervals, as, e.g. (0 + ∞), and the solution is unique without prescribing its behaviour at infinity. We also consider the associate stationary problem. Finally, some applications to the linear heat equation with boundary conditions of Robin type are also given.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGISPI (Spain)
dc.description.sponsorshipEU
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30659
dc.identifier.issn1578-7303
dc.identifier.officialurlhttp://www.rac.es/ficheros/doc/00177.pdf
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51426
dc.issue.number2
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
dc.language.isoeng
dc.page.final225
dc.page.initial219
dc.publisherSpringer
dc.relation.projectIDMTM2004–07590–C03–01
dc.relation.projectIDRTN HPRN–CT–2002–00274
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordViscous Burgers equation
dc.subject.keywordlinear heat equation
dc.subject.keywordRobin boundary conditions
dc.subject.keywordstationary Burgers equation
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleNew Results on the Burgers and the Linear Heat Equations in Unbounded Domains
dc.typejournal article
dc.volume.number99
dcterms.referencesBandle, C., Díaz, G. and Díaz, J. I. (1994). Solutions d’equations de reaction diffusion nonlineaires, exploxant au bord parabolic. Comptes Rendus Acad. Sci. Paris, 318, Serie I, 455–460. Bernis, F. (1989). Elliptic and parabolic semilinear problems without conditions at infinity, Archive for Rational Mechanics and Analysis, 106, 3, 217–241. Boccardo, L., Gallouet, T. and Vázquez, J. L. Solutions of nonlinear parabolic equations without growth restric- ´ tions on the data, Electronic Journal Differential Equations, 2001. (URL http://ejde.math.swt.edu o http://ejde.math.unt.edu) Brauner, C.-M. (2005). Some models of cellular flames: Lecture at the Summer School.”Fronts and singularities: mathematics for other sciences”, El Escorial, Madrid. July 11–15, Brezis, H. (1984). Semilinear equations in RN without condition at infinity, Appl. Math. Optim., 12, 3, 271–282. Díaz, G. and Letelier, R. (1993). Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal. T.M.A., 20, 97–125. Díaz, J. I. (1991). Sobre la controlabilidad aproximada de problemas no lineales disipativos. In Jornadas Hispano Francesas sobre Control de Sistemas Distribuidos. Univ. de Malaga, 41–49. Díaz, J. I. and González, S. (2005). On the Burgers' equation in unbounded domains without condition at infinity, Proceeddings of the XIX CEDYA, Univ. Carlos III, Leganes, Madrid, 19-23 Septiembre de 2005. Díaz, J. I. and González, S. Paper in preparation. Díaz, J. I. and Oleinik, O. A. (1992). Nonlinear elliptic boundary value problems in unbounded domains and the asymptotic behaviour of its solutions. Comptes Rendus Acad. Sci. Paris, 315, Serie I, 787–792. Díaz, J. I. (1995). Obstruction and some approximate controllability results for the Burgers' equation and related problems. In Control of partial differential equations and applications (E. Casas ed.), Lecture Notes in Pure and Applied Mathematics, 174, Marcel Dekker, Inc., New York, 63–76. Fernández de la Mora, J. (2004). The spreading of a charged cloud, Burgers’equation, and nonlinear simple waves in a perfect gas, In Simplicity, Rigor and Relevance in Fluid Mechanics, F. J. Higuera et al eds. CIMNE, Barcelona, 250–266. Herrero, M. A. and Pierre, M. (1985). Some results for the Cauchy problem for ut = ∆u m when 0 < m < 1,Trans. A. M. S., 291, 145–158. Porretta, A. (2002).Uniqueness of solutions of some elliptic equations without condition at infinity, C.R.Acad. Sci. Paris, Ser. I, 335, 739–744. Strauss, W. A. (1992). Partial Differential Equations. John Wiley & Sons, New York. Witham, G. B. (1974). Linear and nonlinear waves, Wiley Interscience, New York. Yamada, K. (2005). On viscous conservation laws growing initial data, Differential and Integral Equations, 18,8, 841–854.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
176.pdf
Size:
189.71 KB
Format:
Adobe Portable Document Format

Collections