Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

Prediction-for-CompAction: navigation in social environments using generalized cognitive maps

dc.contributor.authorVillacorta Atienza, José Antonio
dc.contributor.authorCalvo, Carlos
dc.contributor.authorMakarov Slizneva, Valeriy
dc.date.accessioned2023-06-18T06:45:44Z
dc.date.available2023-06-18T06:45:44Z
dc.date.issued2015-06
dc.description.abstractThe ultimate navigation efficiency of mobile robots in human environments will depend on how we will appraise them: merely as impersonal machines or as human-like agents. In the latter case, an agent may take advantage of the cooperative collision avoidance, given that it possesses recursive cognition, i.e., the agent's decisions depend on the decisions made by humans that in turn depend on the agent's decisions. To deal with this high-level cognitive skill, we propose a neural network architecture implementing Prediction-for-CompAction paradigm. The network predicts possible human-agent collisions and compacts the time dimension by projecting a given dynamic situation into a static map. Thereby emerging compact cognitive map can be readily used as a "dynamic GPS" for planning actions or mental evaluation of the convenience of cooperation in a given context. We provide numerical evidence that cooperation yields additional room for more efficient navigation in cluttered pedestrian flows, and the agent can choose path to the target significantly shorter than a robot treated by humans as a functional machine. Moreover, the navigation safety, i.e., the chances to avoid accidental collisions, increases under cooperation. Remarkably, these benefits yield no additional load to the mean society effort. Thus, the proposed strategy is socially compliant, and the humanoid agent can behave as "one of us.".
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.sponsorshipFoundation INCE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31267
dc.identifier.doi10.1007/s00422-015-0644-8
dc.identifier.issn0340-1200
dc.identifier.officialurlhttp://link.springer.com/article/10.1007/s00422-015-0644-8
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24073
dc.issue.number3
dc.journal.titleBiological Cybernetics
dc.language.isoeng
dc.page.final320
dc.page.initial307
dc.publisherSpringer Verlag
dc.relation.projectIDFIS2010-20054
dc.relation.projectIDINCE2014-011
dc.rights.accessRightsrestricted access
dc.subject.cdu51
dc.subject.keywordNavigation in dynamic situations
dc.subject.keywordCognition
dc.subject.keywordCompact cognitive maps
dc.subject.keywordDynamic GPS
dc.subject.keywordDecision making
dc.subject.keywordNonlinear dynamics
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titlePrediction-for-CompAction: navigation in social environments using generalized cognitive maps
dc.typejournal article
dc.volume.number109
dspace.entity.typePublication
relation.isAuthorOfPublication21b23d2b-75f8-4803-9370-4e88539b81cc
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscovery21b23d2b-75f8-4803-9370-4e88539b81cc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makarov152springer.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format

Collections