Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Schubert triangle geometry on an algebraic surface

dc.contributor.authorSols Lucía, Ignacio
dc.contributor.authorHermoso, Carlos
dc.date.accessioned2023-06-20T10:33:48Z
dc.date.available2023-06-20T10:33:48Z
dc.date.issued2006
dc.description.abstractFor a smooth complex projective surface, and for two families of curves with traditional singularities in it, we enumerate the pairs of curves in each family having two points of contact among them, thus generalizing the double contact formulae known or conjectured by Zeuthen and Schubert in the case of the complex projective plane. The technique we use to this purpose is a particular notion of triangle which can he defined in any smooth surface, thus potentially generalizing to arbitrary surfaces the Schubert technique of triangles.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20496
dc.identifier.doi10.1080/00927870600936799
dc.identifier.issn0092-7872
dc.identifier.officialurlhttp://www.tandfonline.com/doi/pdf/10.1080/00927870600936799
dc.identifier.relatedurlhttp://www.tandfonline.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50530
dc.issue.number12
dc.journal.titleCommunications in Algebra
dc.language.isoeng
dc.page.final4621
dc.page.initial4597
dc.publisherTaylor & Francis
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordAlgebraic surfaces
dc.subject.keywordIntersection theory
dc.subject.keywordSchubert triangles
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleThe Schubert triangle geometry on an algebraic surface
dc.typejournal article
dc.volume.number34
dcterms.referencesArrondo, E., Mallavibarrena, R., Sols, I. (1990). Proof of the Schubert's conjectures on double contacts. In: Xambo-Descamps, S., ed. Enumerative Geometry. Lecture Notes in Math. Vol. 1436. Springer, pp. 1–29. Arrondo, E., Speiser, R., Sols, I. (1997). Global moduli for contacts. Ark. Mat. 35(1):1–57. Fantechi, B., Göttsche, L. (1993). The cohomology ring of the Hilbert scheme of 3 points on a smooth projective variety. J. Reine Angew. Math. 439:147–158. Fulton, W. (1984). Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge, Band 2. Berlin-New York: Springer-Verlag. Griffiths, P., Harris, J. (1978). Principles of Algebraic Geometry. Pure and Applied Mathematics. J. Wiley & Sons, Inc. Wiley Classics Library. Hartshorne, R. (1977). Algebraic Geometry. Graduate Texts in Math 52. New York-Heidelberg: Springer-Verlag. Hermoso, C. (2006). Geometría Enumerativa en una Superficie Algebraica. Ph. D. thesis. Universidad Complutense de Madrid. Available in www.ucm.es/BUCM/2006.htm. Hermoso, C., Sols, I. (1996). Bases of the homology spaces of the Hilbert scheme of points in an algebraic surface. Revista Matemática de la U.C.M. 9(1):53–66. Kleiman, S. L. (1973). Transversality of the general translate. Compo. Math. 28:287–297. Le Barz, P. (1987). Quelques calculs dans la varieté des alignements. Advances in Mathematics 64(2):87–117. Schubert, H. (1880). Anzahlgeometrische Behandlung des Dreiecks. Math.Ann. 17:153–212. Speiser, R. (1986). Transversality Theorems for Families of Maps. Lecture Notes in Math. 1311. Springer, pp. 235–252.
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols05.pdf
Size:
558.31 KB
Format:
Adobe Portable Document Format

Collections