Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Topological and entanglement properties of resonating valence bond wave functions

dc.contributor.authorPoilblanc, Didier
dc.contributor.authorSchuch, Norbert
dc.contributor.authorPérez García, David
dc.contributor.authorCirac, J. Ignacio
dc.date.accessioned2023-06-20T03:47:20Z
dc.date.available2023-06-20T03:47:20Z
dc.date.issued2012-07-06
dc.description.abstractWe examine in details the connections between topological and entanglement properties of short-range resonating valence bond (RVB) wave functions using projected entangled pair states (PEPS) on kagome and square lattices on (quasi)infinite cylinders with generalized boundary conditions (and perimeters with up to 20 lattice spacings). By making use of disconnected topological sectors in the space of dimer lattice coverings, we explicitly derive (orthogonal) “minimally entangled” PEPS RVB states. For the kagome lattice, using the quantum Heisenberg antiferromagnet as a reference model, we obtain the finite-size scaling with increasing cylinder perimeter of the vanishing energy separations between these states. In particular, we extract two separate (vanishing) energy scales corresponding (i) to insert a vison line between the two ends of the cylinder and (ii) to pull out and freeze a spin at either end. We also investigate the relations between bulk and boundary properties and show that, for a bipartition of the cylinder, the boundary Hamiltonian defined on the edge can be written as a product of a highly nonlocal projector, which fundamentally depends upon boundary conditions, with an emergent (local) SU(2)-invariant one-dimensional (superfluid) t -J Hamiltonian, which arises due to the symmetry properties of the auxiliary spins at the edge. This multiplicative structure, a consequence of the disconnected topological sectors in the space of dimer lattice coverings, is characteristic of the topological nature of the states. For minimally entangled RVB states, it is shown that the entanglement spectrum, which reflects the properties of the (gapless or gapped) edge modes, is a subset of the spectrum of the local Hamiltonian, e.g., half of it for the kagome RVB state, providing a simple argument on the origin of the topological entanglement entropy S0 = −ln 2 of the Z2 spin liquid. We propose to use these features to probe topological phases in microscopic Hamiltonians, and some results are compared to existing density matrix renormalization group data.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipAgence Nationale de la Recherche
dc.description.sponsorshipCALMIP
dc.description.sponsorshipNSF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27963
dc.identifier.doi10.1103/PhysRevB.86.014404
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.014404
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44444
dc.issue.number1
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDQUITEMAD-CM (S2009/ESP-1594)
dc.relation.projectID(MTM2011-26912)
dc.relation.projectIDQUEVADIS
dc.relation.projectID(ANR 2010 BLANC 0406-0)
dc.relation.projectID(2012-P1231)
dc.relation.projectID(PHY- 0803371)
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.cdu530.145
dc.subject.ucmFísica matemática
dc.subject.ucmTeoría de los quanta
dc.subject.unesco2210.23 Teoría Cuántica
dc.titleTopological and entanglement properties of resonating valence bond wave functions
dc.typejournal article
dc.volume.number86
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pérez García Topological.pdf
Size:
2.17 MB
Format:
Adobe Portable Document Format

Collections