Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sonic black holes in dilute Bose-Einstein condensates

dc.contributor.authorGaray Elizondo, Luis Javier
dc.contributor.authorCirac, J. I.
dc.contributor.authorAnglin, J. R.
dc.contributor.authorZoller, P.
dc.date.accessioned2023-06-20T19:18:53Z
dc.date.available2023-06-20T19:18:53Z
dc.date.issued2001-02
dc.description© 2001 The American Physical Society. We thank the Austrian Science Foundation and the European Union TMR networks ERBFMRX–CT96–0002 and ERB–FMRX–CT96–0087. J.R.A. is grateful to Ted Jabobson for useful discussions.
dc.description.abstractThe sonic analog of a gravitational black hole in dilute-gas Bose-Einstein condensates is investigated. It is shown that there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit behaviors completely analogous to that of gravitational black holes. The dynamical instabilities involve the creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two qualitatively different one-dimensional models, namely, a long, thin condensate with an outcoupler laser beam providing an "atom sink" and a tight ring-shaped condensate. We also simulate the creation of a stable sonic black hole by solving the Gross-Pitaevskii equation numerically for a condensate subject to a trapping potential which is adiabatically deformed. A sonic black hole could, in this way, be created experimentally with state-of-the-art or planned technology.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipAustrian Science Foundation and the European Union
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29884
dc.identifier.doi10.1103/PhysRevA.63.023611
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.63.023611
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.relatedurlhttp://arxiv.org/pdf/gr-qc/0005131v2.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59514
dc.issue.number2
dc.journal.titlePhysical review A
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDERBFMRX–CT96–0002
dc.relation.projectIDERB–FMRX–CT96–0087
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordHawking radiation
dc.subject.keywordDark solitons
dc.subject.keywordMoving-media
dc.subject.keywordAtom laser
dc.subject.keywordEvaporation
dc.subject.keywordHorizons
dc.subject.keywordAnalog
dc.subject.keywordGas
dc.subject.keywordVortices
dc.subject.keywordCreation
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleSonic black holes in dilute Bose-Einstein condensates
dc.typejournal article
dc.volume.number63
dcterms.references[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (19959. K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995). [2] See, e.g., F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999). [3] For a review, see, e.g., G. E. Volovik, in Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, edited by Y. M. Bunkov and H. Godfrin (Kluwer, Dordrecht, 2000), p. 353; V. B. Eltsov, M. Krusius, and G. E. Volovik, e-print cond mat/9809125. [4] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981). [5] W. G. Unruh, Phys. Rev. D 51, 2827 (1995). [6] M. Visser, e-print gr-qc/9311028; S. Liberati, S. Sonego, and M. Visser, Class. Quantum Grav. 17, 2903 (2000). [7] M. Visser, Phys. Rev. Lett. 80, 3436 (1998); Class. Quantum Grav. 15, 1767 (1998). [8] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973). [9] S. W. Hawking, Nature ~London! 248, 30 (1974); Commun. Math. Phys. 43, 199 (1975). [10] T. Jacobson, Phys. Rev. D 44, 1731 (1991). [11] S. Corley and T. Jacobson, Phys. Rev. D 59, 4011 (1999); S. Corley, ibid. 57, 6280 (1998). [12] For a review, see, e.g., T. Jacobson, Prog. Theor. Phys. Suppl. 136, 1 (1999). [13] V. M. H. Ruutu et al., Nature (London) 382, 334 (1996); T. A. Jacobson and G. E. Volovik, Phys. Rev. D 58, 4021 (19989; G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 69, 662 81999) [JETP Lett. 69, 705 (199)]. [14] B. Reznik, e-print gr-qc/9703076. [15] U. Leonhardt and P. Piwnicki, Phys. Rev. Lett. 84, 822 82000); Phys. Rev. A 60, 4301 (1999). [16] M. R. Matthews et al., Phys. Rev. Lett. 83, 2498 (1999); L. Denget et al., Nature (London) 398, 218 (1999); S. Burger et al., Phys. Rev. Lett. 83, 5198 (1999). [17] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 85, 4643 (2000). [18] M. R. Andrews et al., Science 275, 637 (1997); I. Bloch, T. W. Hánsch, and T. Esslinger, Phys. Rev. Lett. 82, 3008 (1999); E. W. Hagley et al., Science 283, 1706 (1999). [19] See, e.g., T. Winiecki et al., Europhys. Lett. 48, 475 (1999). [20] See, e.g., U. Al Khawaja et al., Phys. Rev. A 60, 1507 (1999); D. L. Feder et al., ibid. 61, 00116011 (2000). [21] Yu. Kagan, N. Prokof’ev, and B. V. Svistunov, Phys. Rev. A 61, 045601 (2000). [22] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller (unpublished). [23] P. O. Fedichev and G. V. Shlyapnikov, Phys. Rev. A 60, R1779 (1999). [24] R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, Phys. Rev. Lett. 80, 2972 (1998); J. Williams and M. Holland, Nature (London) 401, 568 (1999). [25] See Gungwon Kang, preprint, hep-th/9603166 for a concise pedagogical illustration, and references therein, especially S. A. Fulling, Aspects of Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 1989); B. Schroer and J. A. Swieca, Phys. Rev. D 2, 2938 (1970).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay31.pdf
Size:
341.43 KB
Format:
Adobe Portable Document Format

Collections