Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Evaluation of Precise Point Positioning accuracy under large total electron content variations in equatorial latitudes

Loading...
Thumbnail Image

Full text at PDC

Publication date

2015

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

The ionosphere is one of the largest contributors to errors in GNSS positioning. Although in Precise Point Positioning (PPP) the ionospheric delay is corrected to a first order through the `iono-free combination', significant errors may still be observed when large electron density gradients are present. To confirm this phenomenon, the temporal behavior of intense fluctuations of total electron content (TEC) and PPP altitude accuracy at equatorial latitudes are analyzed during four years of different solar activity. For this purpose, equatorial plasma irregularities are identified with periods of high rate of change of TEC (ROT). The largest ROT values are observed from 19:00 to 01:00 LT, especially around magnetic equinoxes, although some differences exist between the stations depending on their location. Highest ROT values are observed in the American and African regions. In general, large ROT events are accompanied by frequent satellite signal losses and an increase in the PPP altitude error during years 2001, 2004 and 2011. A significant increase in the PPP altitude error RMS is observed in epochs of high ROT with respect to epochs of low ROT in years 2001, 2004 and 2011, reaching up to 0.26 m in the 19:00-01:00 LT period.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections