Convolutional capture of the expansion of extra virgin olive oil droplets to quantify adulteration

dc.contributor.authorTorrecilla Velasco, José Santiago
dc.contributor.authorPradana López, Sandra
dc.contributor.authorPerez Calabuig, Ana M.
dc.contributor.authorCancilla, John C.
dc.contributor.authorGarcia Rodriguez, Yolanda
dc.date.accessioned2026-01-13T07:33:42Z
dc.date.available2026-01-13T07:33:42Z
dc.date.issued2022-01-30
dc.description.abstractThis record corresponds to the peer-reviewed journal article “Convolutional capture of the expansion of extra virgin olive oil droplets to quantify adulteration”, published in Food Chemistry (Volume 368, 2022), a Journal Citation Reports (JCR) indexed journal. The work presents the development and validation of a computer vision–based methodology for the detection and quantification of extra virgin olive oil (EVOO) adulterations using convolutional neural networks (CNNs). The proposed approach is based on the analysis of the temporal expansion of EVOO droplets captured under controlled conditions, generating a large-scale image dataset comprising more than 302,000 images of pure and adulterated samples. Several deep learning models were designed and evaluated for (i) the classification of different EVOO types, (ii) the detection and quantification of adulterations with sunflower and corn oils at concentrations ranging from 2.5% to 10% (w/w), and (iii) a global CNN model integrating all EVOOs and adulteration scenarios. The optimized models achieved overall classification accuracies above 96%, demonstrating a high sensitivity to subtle physicochemical differences associated with oil composition. The results confirm that droplet image analysis combined with deep learning constitutes a rapid, non-destructive, and reliable tool for food quality control and fraud detection, with potential applicability throughout the olive oil distribution chain.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationSandra Pradana-Lopez, Ana M. Perez-Calabuig, John C. Cancilla, Yolanda Garcia-Rodriguez, José S. Torrecilla, Convolutional capture of the expansion of extra virgin olive oil droplets to quantify adulteration, Food Chemistry, Volume 368, 2022, 130765, ISSN 0308-8146, https://doi.org/10.1016/j.foodchem.2021.130765. (https://www.sciencedirect.com/science/article/pii/S0308814621017714)
dc.identifier.doi10.1016/j.foodchem.2021.130765
dc.identifier.officialurlhttps://doi.org/10.1016/j.foodchem.2021.130765
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0308814621017714
dc.identifier.urihttps://hdl.handle.net/20.500.14352/129966
dc.issue.number130765
dc.journal.titleFood Chemistry
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDFEI EU 17 03
dc.relation.projectIDFEI 18/10
dc.relation.projectIDFEI 20/19
dc.rights.accessRightsrestricted access
dc.subject.cdu66.0
dc.subject.keywordAdulteration
dc.subject.keywordExtra virgin olive oil
dc.subject.keywordDrops
dc.subject.keywordConvolutional neural network
dc.subject.keywordImages
dc.subject.keywordFood quality
dc.subject.ucmIngeniería química
dc.subject.unesco3309 Tecnología de Los Alimentos
dc.titleConvolutional capture of the expansion of extra virgin olive oil droplets to quantify adulteration
dc.typejournal article
dc.type.hasVersionP
dc.volume.number368
dspace.entity.typePublication
relation.isAuthorOfPublication0937bddf-987b-44ff-8cb1-f4b127174283
relation.isAuthorOfPublication.latestForDiscovery0937bddf-987b-44ff-8cb1-f4b127174283

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4_Food Chemistry, 368, 130765.pdf
Size:
3.06 MB
Format:
Adobe Portable Document Format

Collections