Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Higher-order orbifold Euler characteristics for compact Lie group actions

dc.contributor.authorGusein-Zade, Sabir Medgidovich
dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorMelle Hernández, Alejandro
dc.date.accessioned2023-06-18T06:49:06Z
dc.date.available2023-06-18T06:49:06Z
dc.date.issued2015-12
dc.description.abstractWe generalize the notions of the orbifold Euler characteristic and of the higher-order orbifold Euler characteristics to spaces with actions of a compact Lie group using integration with respect to the Euler characteristic instead of the summation over finite sets. We show that the equation for the generating series of the kth-order orbifold Euler characteristics of the Cartesian products of the space with the wreath products actions proved by Tamanoi for finite group actions and by Farsi and Seaton for compact Lie group actions with finite isotropy subgroups holds in this case as well
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipRussian Foundation for Basic Research
dc.description.sponsorshipPresident Grant for State Support of Leading Scientific Schools
dc.description.sponsorshipMinisterio de ciencia y Tecnología (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35019
dc.identifier.doi10.1017/S030821051500027X
dc.identifier.issn0308-2105
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10047657&fulltextType=RA&fileId=S030821051500027X
dc.identifier.relatedurlhttp://journals.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24292
dc.issue.number6
dc.journal.titleProceedings of the Royal Society of Edinburgh: Section A Mathematics
dc.language.isoeng
dc.page.final1222
dc.page.initial1215
dc.publisherCambridge University Press
dc.relation.projectIDRFBR-13-01-00755
dc.relation.projectIDNSh-5138.2014.1
dc.relation.projectIDMTM2013-45710-C2-02-P
dc.rights.accessRightsopen access
dc.subject.cdu515.14
dc.subject.keywordLie group actions
dc.subject.keywordorbifold Euler characteristic
dc.subject.keywordwreath products
dc.subject.keywordgenerating series
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleHigher-order orbifold Euler characteristics for compact Lie group actions
dc.typejournal article
dc.volume.number145
dcterms.references[1] M. Atiyah, G. Segal. On equivariant Euler characteristics. J. Geom. Phys. 6 (1989), no.4, 671–677. [2] V. Batyrev. Non-Archimedian integrals and stringy Euler numbers of log-Terminal pairs. J. Eur. Math. Soc. 1 (1999), 5–33. [3] J. Bryan, J. Fulman. Orbifold Euler characteristics and the number of commuting m-tuples in the symmetric groups. Ann. Comb. 2 (1998), no.1, 1–6. [4] C. Farsi, Ch. Seaton. Generalized orbifold Euler characteristics for general orbifolds and wreath products. Algebr. Geom. Topol. 11 (2011), no.1, 523–551 [5] S.M. Gusein-Zade. Integration with respect to the Euler characteristic and its applications. Russian Math. Surveys 65 (2010), no.3, 399–432. [6] S.M. Gusein-Zade, I. Luengo, A. Melle-Hernández. On the power structure over the Grothendieck ring of varieties and its applications. Proc. Steklov Inst. Math. 258 (2007), no.1, 53–64. [7] S.M. Gusein-Zade, I. Luengo, A. Melle-Hernández. Higher order generalized Euler characteristics and generating series. Preprint 2013, ArXiv math.AG/1303.5574. [8] F. Hirzebruch, Th. Höfer. On the Euler number of an orbifold. Math. Ann. 286 (1990), no.1-3, 255–260. [9] I.G. Macdonald. The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc. 58 (1962), 563–568. [10] H. Tamanoi. Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory. Algebr. Geom. Topol. 1 (2001), 115–141. [11] O.Ya. Viro. Some integral calculus based on Euler characteristic. Topology and geometry: Rohlin Seminar, 127–138, Lecture Notes in Math., 1346, Springer, Berlin, 1988. [12] W.Wang, J. Zhou. Orbifold Hodge numbers of wreath product orbifolds. J. Geometry and Physics 38 (2001), 152–169.
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luengo39.pdf
Size:
130.05 KB
Format:
Adobe Portable Document Format

Collections