Foundations of quantitative predicate abstraction for stability analysis of hybrid systems
Loading...
Download
Official URL
Full text at PDC
Publication date
2015
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Prabhakar, P., Soto, M.G. (2015). Foundations of Quantitative Predicate Abstraction for Stability Analysis of Hybrid Systems. In: D’Souza, D., Lal, A., Larsen, K.G. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2015. Lecture Notes in Computer Science, vol 8931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46081-8_18
Abstract
We investigate the formal connections between “quantitative predicate abstractions” for stability analysis of hybrid systems and “continuous simulation relations”. It has been shown recently that stability is not bisimulation invariant, and hence, stronger notions which extend the classical simulation and bisimulation relations with continuity constraints have been proposed, which force preservation of stability. In another direction, a quantitative version of classical predicate abstraction has been proposed for approximation based stability analysis of certain classes of hybrid systems. In this paper, first, we present a general framework for quantitative predicate abstraction for stability analysis. We then show that this technique can be interpreted as constructing a one dimensional system which continuously simulates the original system. This induces an ordering on the class of abstract systems and hence, formalizes the notion of refinement.