Coulomb gauge approach to (qqg)over-bar hybrid mesons
Loading...
Official URL
Full text at PDC
Publication date
2007
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Abstract
An effective Coulomb gauge Hamiltonian, H-eff, is used to calculate the light ( u (u) over barg), strange ( s (s) over barg) and charmed (c (c) over barg) hybrid meson spectra. For the same two parameter H-eff providing glueball masses consistent with lattice results and a good description of the observed u, d, s and c quark mesons, a large-scale variational treatment predicts that the lightest hybrid has J(PC) = 0(++) and mass 2.1 GeV. The lightest exotic 1(-+) state is just above 2.2 GeV, near the upper limit of lattice and flux tube predictions. These theoretical formulations all indicate that the observed 1(-+) pi(1)(1600) and, more clearly, pi(1)(1400) are not hybrid states. The Coulomb gauge approach further predicts that in the strange and charmed sectors, respectively, the ground state hybrids have 1(+-) with masses 2.1 and 3.8 GeV, while the. rst exotic 1( +) states are at 2.4 and 4.0 GeV. Finally, using our hybrid wavefunctions and the Franck-Condon principle, a novel experimental signature is presented to assist heavy hybrid meson searches.
Description
© Springer-Verlag / Societ`a Italiana di Fisica 2007.
Work supported in part by grants FPA2004-02602, 2005-02327, PR27/05-13955-BSCH (Spain) and U. S. DOE Grants DE-FG02 97ER41048 and DE-FG02-03ER41260.