Electrical characterization of electron cyclotron resonance deposited silicon nitride dual layer for enhanced Al/SiNx : H/InP metal-insulator-semiconductor structures fabrication

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.date.accessioned2023-06-20T19:06:27Z
dc.date.available2023-06-20T19:06:27Z
dc.date.issued1999-12-15
dc.description© American Institute of Physics. The authors would like to thank C.A.I. de Implantación Iónica from the Complutense University in Madrid for technical assistance with the ECR-CVD system. This work has been supported by the local Government Grant No. VA35/96 and by the Spanish government under Grant No. TIC 98/0740.
dc.description.abstractWe report a study of metal-insulator-semiconductor (MIS) structures on InP. The interfacial state density and deep levels existing in MIS structures were measured by deep level transient spectroscopy (DLTS) technique. The electrical insulator properties were measured by current-voltage techniques. MIS structures were fabricated on InP substrates by direct deposition of silicon nitride (SiNx:H) thin films by electron cyclotron resonance chemical vapor deposition. In this work, we show that interfacial state density can be diminished, without degrading electrical insulator properties, by fabricating MIS structures based on a dual layer insulator with different compositions and with different thickness. The effect of rapid thermal annealing treatment has been analyzed in detail in these samples. Interface state densities as low as 3 x 10(11) cm(-2) eV(-1) were measured by DLTS in some structures. Conductance transients caused by disorder-induced gap states have been observed and analyzed providing some information about interface width. Finally, deep levels induced in the substrate have been investigated. Three deep levels at energies of 0.19, 0.24, and 0.45 eV measured from the conduction band have been found, and their dependence on the rapid thermal annealing process has been analyzed. (C) 1999 American Institute of Physics. [S0021-8979(99)03824-4].
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipValladolid local government
dc.description.sponsorshipSpanish government
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26842
dc.identifier.citation1) H. C. Casey Jr., and E. Buehler, Appl. Phys. Lett. 30, 247 (1977). 2) Y. Okamura and T. Kobayashi, Jpn. J. Appl. Phys., Part 1 19, 2143 (1980). 3) D. Fritzsche, Inst. Phys. Conf. Ser. 50, 258 (1980). 4) D. L. Lile and M. J. Taylor, J. Appl. Phys. 54, 260 (1983). 5) F. Plais, B. Agius, N. Proust, S. Cassette, G. Ravel, and M. Puech, Appl. Phys. Lett. 59, 837 (1991). 6) Y. Z. Hu, M. Li, Y. Wang, E. A. Irene, M. Rowe, and H. C. Casey Jr., Appl. Phys. Lett. 63, 1113 (1993). 7) A. Kapila and M. Malhotra, Appl. Phys. Lett. 62, 1009 (1993). 8) A. Kapila, X. Si, and V. Malhotra, Appl. Phys. Lett. 62, 2259 (1993). 9) L. He and G. Lucovsky, Mater. Res. Soc. Symp. Proc. 336, 787 (1994). 10) J. Kanicki, F. R. Libsch, J. Griffth, and R. Polastre, J. Appl. Phys. 6, 2339 (1991). 11) S. Sitbon, M.-C. Hugon, B. Agins, F. Abel, J. L. Courant, and M. Puech, J. Vac. Sci. Technol. A 13, 2900 (1995). 12) A. Kapila, X. Si, and V. Malhora, Appl. Phys. Lett. 62, 2259 (1993). 13) S. García, I. Mártil, G. González-Díaz, E. Castán, and S. Dueñas, J. Appl. Phys. 83, 600 (1998). 14) S. García, I. Mártil, G. González-Díaz, E. Castán, and S. Dueñas, J. Appl. Phys. 83, 332 (1998). 15) G. N. Parsons, J. H. Souk, and J. Batey, J. Appl. Phys. 70, 1553 (1991). 16) Y. Ma, T. Yasuda, and G. Lucovsky, J. Vac. Sci. Technol. B 11, 1533 (1993). 17) Y. Ma, T. Yasuda, and G. Lucovsky, Appl. Phys. Lett. 64, 2226 (1994). 18) E. Redondo, N. Blanco, I. Mártil, G. González-Díaz, R. Peláez, S. Dueñas, and H. Castán, J. Vac. Sci. Technol. A 17, 2178 (1999). 19) E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York, 1982). 20) T. Hashizume, H. Hasegawa, R. Riemenschneider, and H. L. Hartnagel, Jpn. J. Appl. Phys., Part 1 33, 727 (1994). 21) H. Hasegawa, M. Akazawa, H. Ishii, A. Uraie, and H. Iwadate, J. Vac. Sci. Technol. B 8, 867 (1990). 22) T. Hashizume, H. Hasegawa, R. Riemenschneider, and H. L. Hartnagel, Jpn. J. Appl. Phys., Part 1 33, 727 (1994). 23) K. Yamasaki, M. Yoshida, and T. Sugano, Jpn. J. Appl. Phys., Part 1 18, 113 (1979). 24) K. L. Wang, IEEE Trans. Electron Devices 27, 2231 (1980). 25) F. Martínez, I. Mártil, G. González-Díaz, B. Selle, and J. Sieber, J. Non-Cryst. Solids 227–230, 523 (1998). 26) Y. Yamazoe, Y. Sasai, T. Nishisno, and Y. Hamakawa, Jpn. J. Appl. Phys., Part 1 20, 347 (1981). 27) F. Martínez, I. Mártil, G. González-Díaz, A. M. Bernal-Oliva, E. Márquez, and J. M. González-Leal, Thin Solid Films 343–344, 433 (1999). 28) L. He, H. Hassegawa, T. Sawada, and H. Ohno, Jpn. J. Appl. Phys., Part 1 27, 512 (1988). 29) L. He, H. Hasegawa, T. Sawada, and H. Ohno, J. Appl. Phys. 63, 2120 (1988). 30) H. Hasegawa, L. He, H. Ohno, T. Sawada, T. Haga, Y. Abe, and H. Takahashi, J. Vac. Sci. Technol. B 5, 1097 (1987). 31) S. Dueñas, R. Peláez, E. Castán, R. Pinacho, L. Qintanilla, J. Barbolla, I. Mártil, and G. González-Díaz, Appl. Phys. Lett. 71, 826 (1996). 32) F. P. Heiman and G. Warfield, IEEE Trans. Electron Devices ED-12, 167 (1965). 33) M. Maeda and Y. Arita, J. Appl. Phys. 53, 6852 (1982). 34) W. S. Lau, S. J. Fonash, and J. Kanicki, J. Appl. Phys. 66, 2765 (1989). 35) E. K. Kim, H. Y. Cho, J. H. Yoon, S. Min, Y. L. Jung, and W. H. Lee, J. Appl. Phys. 68, 1665 (1990). 36) J. D. Oberstar and B. G. Streetman, Thin Solid Films 103, 17 (1983). 37) N. Yamamoto, K. Uwai, and K. Takahei, J. Appl. Phys. 65, 3072 (1989). 38) E. M. Omeljanovsky, A. V. Pakhomov, and A. Y. Polyakov, Semicond. Sci. Technol. 4, 947 (1989). 39) J. M. Zavada, S. J. Pearto, R. G. Wilson, C. S. Wu, M. Stavola, F. Reu, J. Lopata, W. C. Dautremont-Smith, and S. W. Novak, J. Appl. Phys. 65, 347 (1989). 40) B. Chatterjee, S. A. Ringel, R. Sieg, R. Hoffman, and I. Weinberg, Appl. Phys. Lett. 65, 58 (1994). 41) L. Quintanilla, S. Dueñas, E. Castán, R. Pinacho, J. Barbolla, J. M. Martín, and G. González-Díaz J. Appl. Phys. 81, 3143 (1997). 42) O. Wada, A. Majerfeld, and A. N. M. Choudhury, J. Appl. Phys. 51, 423 (1980). 43) N. Yamamoto, K. Uwai, and K. Takahei, J. Appl. Phys. 65, 3072 (1989).
dc.identifier.doi10.1063/1.371774
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.371774
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59252
dc.issue.number13
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final6930
dc.page.initial6924
dc.publisherAmerican Institute of Physics
dc.relation.projectIDVA35/96
dc.relation.projectIDTIC 98/0740
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordHydrogen Passivation
dc.subject.keywordDeep Levels
dc.subject.keywordInP
dc.subject.keywordFilms
dc.subject.keywordStability
dc.subject.keywordTraps
dc.subject.keywordGaAs
dc.subject.keywordSi
dc.subject.keywordSpectroscopy.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleElectrical characterization of electron cyclotron resonance deposited silicon nitride dual layer for enhanced Al/SiNx : H/InP metal-insulator-semiconductor structures fabrication
dc.typejournal article
dc.volume.number86
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,80libre.pdf
Size:
253.81 KB
Format:
Adobe Portable Document Format
Collections