Congruences of small degree in G(1,4)

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorBertolini, Marina
dc.contributor.authorTurrini, Cristina
dc.date.accessioned2023-06-20T16:50:01Z
dc.date.available2023-06-20T16:50:01Z
dc.date.issued1998
dc.description.abstractWe give the list of all possible congruences in G(1,4) of degree d less than or equal to 10 and we explicitely construct most of them.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14845
dc.identifier.doi10.1080/00927879808826340
dc.identifier.issn0092-7872
dc.identifier.officialurlhttp://www.tandfonline.com/loi/lagb20
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57175
dc.issue.number10
dc.journal.titleCommunications in Algebra
dc.language.isoeng
dc.page.final3266
dc.page.initial3249
dc.publisherMarcel Dekker
dc.relation.projectIDPB93-0440-C03-0
dc.relation.projectIDGNSAGA, CNR, Italy
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordGrassmann variety
dc.subject.keyworddegeneracy loci
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleCongruences of small degree in G(1,4)
dc.typejournal article
dc.volume.number26
dcterms.references(11 A.Alzati. 3-Scroll immersi in G(1,4). Ann. Univ.Fermm 32(1986): 45-54. [2] E.Arrondo. Pfaffian linkage in codimension three and applications to congruences. Appendix to this work. Comm. Algebra, (26):3267-3274, 1998 [3] E.Arrondo, M.Bertolini and C.Turrini. Classification of smooth congruences with a fundamental curve. Projective Geometry with applications, Marcel Dekker LN 166 (1994):43-56. [4] E.Arrondo, M.Bertolini and C.Turrini. Quadric bundle congruences in G(1, n). preprint 1995. [5] M. Beltrametti, M. Schneider, and A. Sommese. Threefolds of degree 9 and 10 in P6. Mathematische Annolen, (288):613-644, 1990. [6] M. L. Fania and E. L. Livorni. Degree nine manifolds of dimension 2 3. Mathematische Nachrichten, (169):117-134, 1994. (71 M. L. Fania and E. L. Livorni. Degree ten manifolds of dimension > 3. To appear on Mathematische Nachrichten. [8] T. Fujita. Classification Theories of Polarized Varieties. London Mathematical Society LN 155 (1990), C.U.P. [9] P. Griffiths and J. Harris. John Wiley & Sons, 1978. [lo] R. Hartshorne. Algebmic Geometry. Springer GTM 52 (1977). [ll] P. Ionescu. Embedded projective varieties of small invariants. Springer LNM 1056 (1984):143-186. (121 P. Ionescu. Varieties of small degree. An.St.Univ.A.I.Cuza 31 (1985):17-19. [I31 P. Ionescu. Embedded projective varieties of small invariants 111. In Algebraic Geometry L'Aquila 1988, Springer LNM 1417 (1990):138-154. [14] E.Rogora. Varieties with many lines. Manuscripta Math. 82 (1987):207-220.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
20.pdf
Size:
663.45 KB
Format:
Adobe Portable Document Format

Collections