Congruences of small degree in G(1,4)
| dc.contributor.author | Arrondo Esteban, Enrique | |
| dc.contributor.author | Bertolini, Marina | |
| dc.contributor.author | Turrini, Cristina | |
| dc.date.accessioned | 2023-06-20T16:50:01Z | |
| dc.date.available | 2023-06-20T16:50:01Z | |
| dc.date.issued | 1998 | |
| dc.description.abstract | We give the list of all possible congruences in G(1,4) of degree d less than or equal to 10 and we explicitely construct most of them. | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | DGICYT | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/14845 | |
| dc.identifier.doi | 10.1080/00927879808826340 | |
| dc.identifier.issn | 0092-7872 | |
| dc.identifier.officialurl | http://www.tandfonline.com/loi/lagb20 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/57175 | |
| dc.issue.number | 10 | |
| dc.journal.title | Communications in Algebra | |
| dc.language.iso | eng | |
| dc.page.final | 3266 | |
| dc.page.initial | 3249 | |
| dc.publisher | Marcel Dekker | |
| dc.relation.projectID | PB93-0440-C03-0 | |
| dc.relation.projectID | GNSAGA, CNR, Italy | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 512.7 | |
| dc.subject.keyword | Grassmann variety | |
| dc.subject.keyword | degeneracy loci | |
| dc.subject.ucm | Geometria algebraica | |
| dc.subject.unesco | 1201.01 Geometría Algebraica | |
| dc.title | Congruences of small degree in G(1,4) | |
| dc.type | journal article | |
| dc.volume.number | 26 | |
| dcterms.references | (11 A.Alzati. 3-Scroll immersi in G(1,4). Ann. Univ.Fermm 32(1986): 45-54. [2] E.Arrondo. Pfaffian linkage in codimension three and applications to congruences. Appendix to this work. Comm. Algebra, (26):3267-3274, 1998 [3] E.Arrondo, M.Bertolini and C.Turrini. Classification of smooth congruences with a fundamental curve. Projective Geometry with applications, Marcel Dekker LN 166 (1994):43-56. [4] E.Arrondo, M.Bertolini and C.Turrini. Quadric bundle congruences in G(1, n). preprint 1995. [5] M. Beltrametti, M. Schneider, and A. Sommese. Threefolds of degree 9 and 10 in P6. Mathematische Annolen, (288):613-644, 1990. [6] M. L. Fania and E. L. Livorni. Degree nine manifolds of dimension 2 3. Mathematische Nachrichten, (169):117-134, 1994. (71 M. L. Fania and E. L. Livorni. Degree ten manifolds of dimension > 3. To appear on Mathematische Nachrichten. [8] T. Fujita. Classification Theories of Polarized Varieties. London Mathematical Society LN 155 (1990), C.U.P. [9] P. Griffiths and J. Harris. John Wiley & Sons, 1978. [lo] R. Hartshorne. Algebmic Geometry. Springer GTM 52 (1977). [ll] P. Ionescu. Embedded projective varieties of small invariants. Springer LNM 1056 (1984):143-186. (121 P. Ionescu. Varieties of small degree. An.St.Univ.A.I.Cuza 31 (1985):17-19. [I31 P. Ionescu. Embedded projective varieties of small invariants 111. In Algebraic Geometry L'Aquila 1988, Springer LNM 1417 (1990):138-154. [14] E.Rogora. Varieties with many lines. Manuscripta Math. 82 (1987):207-220. | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 | |
| relation.isAuthorOfPublication.latestForDiscovery | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 |
Download
Original bundle
1 - 1 of 1

