Condensation of bosons with several degrees of freedom
dc.contributor.advisor | Bargueño de Retes, Pedro | |
dc.contributor.advisor | Sols Lucia, Fernando | |
dc.contributor.author | Delgado López, Rafael | |
dc.date.accessioned | 2023-06-19T16:08:14Z | |
dc.date.available | 2023-06-19T16:08:14Z | |
dc.date.defense | 2013-06 | |
dc.date.issued | 2013-06 | |
dc.description | Máster en Física Fundamental. Facultad de Ciencias Físicas. Universidad Complutense de Madrid. Curso 2012-2013 | |
dc.description.abstract | The condensation of the spinless ideal charged Bose gas in the presence of a magnetic field is revisited as a first step to tackle the more complex case of a molecular condensate, where several degrees of freedom have to be taken into account. In the charged bose gas, the conventional approach is extended to include the macroscopic occupation of excited kinetic states lying in the lowest Landau level, which plays an essential role in the case of large magnetic fields. In that limit, signatures of two diffuse phase transitions (crossovers) appear in the specific heat. In particular, at temperatures lower than the cyclotron frequency, the system behaves as an effectively one-dimensional free boson system, with the specific heat equal to (1/2) NkB and a gradual condensation at lower temperatures. In the molecular case, which is currently in progress, we have studied the condensation of rotational levels in a two–dimensional trap within the Bogoliubov approximation, showing that multi–step condensation also occurs. | |
dc.description.abstract | En este trabajo se analiza la condensación de un gas de Bose ideal de partículas cargadas y sin espín en presencia de un campo magnético como un primer paso para tratar el caso más complejo de un gas de Bose molecular, en el que se han de considerar varios grados de libertad. Respecto al gas de Bose cargado, el tratamiento tradicional se extiende para incluir un término de niveles cinéticos excitados en el estado fundamental de niveles de Landau. Dicho término juega un papel especial en el límite de grandes campos magnéticos, en el que aparecen señales de dos transiciones de fase difusas (crossovers) en el calor específico. En particular, a temperaturas menores que la frecuencia ciclotrón, el sistema se comporta como un sistema unidimensional de bosones libres, con calor específico (1/2) NkB, y presenta una condensación gradual a temperaturas más bajas. En el caso molecular, todavía en estudio, hemos estudiado la condensación de niveles rotacionales en una trampa bidimensional dentro de la aproximación de Bogoliubov, mostrando que también se da la condensación múltiple. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25978 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/36384 | |
dc.language.iso | eng | |
dc.master.title | Máster en Física Fundamental | |
dc.page.total | 10 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Statistical Mechanics | |
dc.subject.keyword | Macrocanonical Ensemble | |
dc.subject.keyword | Bose Einstein Condensation | |
dc.subject.keyword | Density of States | |
dc.subject.keyword | Degenerate Matter | |
dc.subject.keyword | Bogoliubov Interactions | |
dc.subject.keyword | Mecánica Estadística | |
dc.subject.keyword | Distribución Macrocanónica | |
dc.subject.keyword | Condensación de Bose Einstein | |
dc.subject.keyword | Densidad de Estados | |
dc.subject.keyword | Materia Degenerada | |
dc.subject.keyword | Interacciones de Bogoliubov | |
dc.subject.ucm | Física de materiales | |
dc.title | Condensation of bosons with several degrees of freedom | |
dc.title.alternative | Condensación de bosones con varios grados de libertad | |
dc.type | master thesis | |
dcterms.references | [1] M. R. Schafroth, Phys. Rev. 100, 476 (1955). [2] R. M. May, Phys. Rev. 115, 254 (1959). [3] R. M. May, J. Math. Phys. 6, 1462 (1965). [4] J. Daicic, N. E. Frankel and V. Kowalenko, Phys. Rev. Lett. 71, 1779 (1993). [5] J. Daicic, N. E. Frankel, R. M. Gailis and V. Kowalenko, Phys. Rep. 237, 63 (1994). [6] D.J. Toms, Phys. Rev. Lett. 69 1152 (1992). [7] D. J. Toms, Phys. Rev. D 47 2483 (1993). [8] D. J. Toms, Phys. Lett. B 343 259 (1995). [9] P. Elmfors, P. Liljenberg, D. Persson and B. -S. Skagerstam, Phys. Lett. B 348 462 (1995). [10] H. -P- Rojas, Phys. Lett. B 379, 148 (1996). [11] H. -P- Rojas, Phys. Lett. A 234, 13 (1997). [12] G. A. Smolenski and V. A. Isupov, Sov. Journal of Techn. Phys. 24, 1375 (1954). [13] G. B. Standen and D. J. Toms, Phys. Lett. A 239, 401 (1998). [14] G. B. Standen and D. J. Toms, Phys. Rev. E 60, 5275 (1999). [15] V. R. Khalilov, C. -L. Ho and C. Yang, Mod. Phys. Lett A 12, 1973 (1997). [16] V. R. Khalilov, Theor. Math. Phys., 114, 345 (1998). [17] V. R. Khalilov and C. -L. Ho, Phys. Rev. D, 60, 033003 (1999). [18] X. Jian, J. Qin and Q. Gu, J. Phys.: Condens. Matter 23, 026003 (2011). [19] P. Bargue˜no and F. Sols, Phys. Rev. A, 85, 021605(R) (2012). [20] J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, Nat. Phys. 6, 265 (2010). [21] K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S.Inouye, Phys. Rev. Lett. 105, 203001 (2010). [22] K.-K. Ni, S. Ospelkaus, D. Wang, G. Quémenér, B.Neyenhuis, M. H. G. de Miranda, J. L. Bohn, J. Ye, and 10 D. S. Jin, Nature (London) 464, 1324 (2010). [23] P. F. Staanum, K. Hojbjerre, P. S. Skyt, A. K. Hansen and M. Drewsen, Nat. Phys. 6, 271 (2010). [24] T. Schneider, B. Roth, H. Duncker, I. Ernsting and S. Schiller, Nat. Phys. 6, 275 (2010). [25] We note however that huge magnetic fields can be generated in stellar objects like supernovae and neutron stars. Specifically, magnetic fields of the order 1020 G and larger have been suggested to exist in the cores of neutron stars [26], where kaon condensation was proposed [27]. [26] S. Chakrabarty, D. Bandyopadhyay, and S. Pal, Phys.Rev. Lett. 78, 2898 (1997). [27] D.B. Kaplan and A. E. Nelson, Phys. Lett. B, 175, 57 (1986). [28] W. Ketterle and N. J. van Druten, Phys. Rev. A, 54, 656 (1996). [29] N. J. van Druten and W. Ketterle, Phys. Rev. Lett., 79, 549 (1997). [30] L. Landau and L. Lifschitz, Quantum Mechanics, Pergamon, Oxford (1987). [31] K. Huang, Statistical Mechanics (2nd edition), John Wiley and Sons (1987). [32] L. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford University Press, Oxford (2003). [33] PARI/GP, version 2.5.1, Bordeaux, 2012, http://pari.math.u-bordeaux.fr/. [34] Delgado, R. L., Bargue˜no, P., & Sols, F. 2012, Phys. Rev. E, 86, 031102 [35] Paul S. Julienne, Thomas M. Hanna and Zbigniew Idziaszek, Phys. Chem. Chem. Phys., 2011, 13, 19114–19124 [36] G. Parisi, Statistical Field Theory, Perseus Books Group, 1998. [37] D. J. Amit and V. Mart´ın Mayor, Field Theory, the Renormalization Group and Critical Phenomena, World-Scientific Singapore, third edition, 2005. [38] Fernandez, L. A., Mart´ın-Mayor, V., & Yllanes, D. 2011, arXiv:1106.1555 [39] Janus Collaboration, Ba˜nos, R. A., Cruz, A., et al. 2012, arXiv:1202.5593 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1