Two-step Darboux transformations and exceptional Laguerre polynomials
dc.contributor.author | Gómez-Ullate Otaiza, David | |
dc.contributor.author | Kamran, Niky | |
dc.contributor.author | Milson, Robert | |
dc.date.accessioned | 2023-06-20T03:53:36Z | |
dc.date.available | 2023-06-20T03:53:36Z | |
dc.date.issued | 2012-03-01 | |
dc.description | © 2011 Elsevier Inc. All rights reserved. The research of DGU was supported in part by MICINN-FEDER grant MTM2009- 06973 and CUR-DIUE grant 2009SGR859. The research of NK was supported in part by NSERC grant RGPIN 105490-2004. The research of RM was supported in part by NSERC grant RGPIN-228057-2004. | |
dc.description.abstract | It has been recently discovered that exceptional families of Sturm-Liouville orthogonal polynomials exist, that generalize in some sense the classical polynomials of Hermite, Laguerre and Jacobi. In this paper we show how new families of exceptional orthogonal polynomials can be constructed by means of multiple-step algebraic Darboux transformations. The construction is illustrated with an example of a 2-step Darboux transformation of the classical Laguerre polynomials, which gives rise to a new orthogonal polynomial system indexed by two integer parameters. For particular values of these parameters, the classical Laguerre and the type II X(l)-Laguerre polynomials are recovered. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MICINN | |
dc.description.sponsorship | CUR-DIUE | |
dc.description.sponsorship | NSERC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30775 | |
dc.identifier.doi | 10.1016/j.jmaa.2011.09.014 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.jmaa.2011.09.014 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.relatedurl | http://arxiv.org/abs/1103.5724 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44627 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of mathematical analysis and applications | |
dc.language.iso | eng | |
dc.page.final | 418 | |
dc.page.initial | 410 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2009-06973 | |
dc.relation.projectID | 2009SGR859 | |
dc.relation.projectID | RGPIN 105490-2004 | |
dc.relation.projectID | RGPIN-228057-2004 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Shape-invariant potentials | |
dc.subject.keyword | Orthogonal polynomials | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Two-step Darboux transformations and exceptional Laguerre polynomials | |
dc.type | journal article | |
dc.volume.number | 387 | |
dcterms.references | [1] V. E. Adler, A modification of Crum’s method, Theor. Math. Phys. 101 (1994) 1381–1386. [2] S. Bochner, Über Strum-Liouvillsche Polynomsysteme, Math. Z. 29 (1929), 730-736. [3] M. M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. 6 (1955) 121. [4] G. Darboux Théorie Générale des Surfaces vol 2, Gauthier-Villars, Paris, 1888. [5] D. Dutta and P. Roy, Conditionally exactly solvable potentials and exceptional orthogonal polynomials, J. Math. Phys. 51 (2010) 042101. [6] A. Erd´elyi et al., Higher Transcendental Functions vol 1, McGraw-Hill, New York, 1953. [7] D. Gómez-Ullate, N. Kamran and R. Milson, Quasi-exact solvability and the direct approach to invariant subspaces. J. Phys. A 38 (2005) 2005–2019. [8] D. Gómez-Ullate, N. Kamran and R. Milson, Quasi-exact solvability in a general polynomial setting, Inverse Problems, 23 (2007) 1915. [9] D. Gómez-Ullate, N. Kamran and R. Milson, The Darboux transformation and algebraic deformations of shape-invariant potentials, J. Phys. A 37 (2004) 1789–1804. [10] D. Gómez-Ullate, N. Kamran and R. Milson, Supersymmetry and algebraic Darboux transformations, J. Phys. A 37 (2004) 10065–10078. [11] D. Gómez-Ullate, N. Kamran, and R. Milson, An extension of Bochner’s problem: exceptional invariant subspaces, J. Approximation Theory 162 (2010) 897–1006. [12] D. Gómez-Ullate, N. Kamran, and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl. 359 (2009) 352–367. [13] D. Gómez-Ullate, N. Kamran, and R. Milson, Exceptional orthogonal polynomials and the Darboux transformation, J. Phys. A 43 (2010) 434016. [14] D. Gómez-Ullate, N. Kamran, and R. Milson, On orthogonal polynomials spanning a nonstandard flag, Contemp. Math. (in press) arXiv:1101.5584. [15] Y. Grandati, Solvable rational extensions of the isotonic oscillator , Ann Phys. 326 (2011) 2074–2090. [16] C-L. Ho, Dirac(-Pauli), FokkerPlanck equations and exceptional Laguerre polynomials, Ann Phys. 326 (2011) 797807. [17] P. Lesky, Die Charakterisierung der klassischen orthogonalen Polynome durch SturmLiouvillesche Differentialgleichungen, Arch. Rat. Mech. Anal. 10 (1962), 341–352. [18] B. Midya and B. Roy, Exceptional orthogonal polynomials and exactly solvable potentials in position dependent mass Schr¨odinger Hamiltonians, Phys. Lett. A 373(45) (2009) 4117–4122. [19] C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A 41 (2008) 392001–392007. [20] C. Quesne, Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics, SIGMA 5 (2009) 084. [21] S. Odake and R. Sasaki, Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B 679 (2009) 414. [22] S. Odake and R. Sasaki, Another set of infinitely many exceptional (X_ℓ) Laguerre polynomials, Phys. Lett. B684 (2010) 173–176. [23] S. Odake and R. Sasaki, Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials, J. Math. Phys. 51 (2010) 053513. [24] R. Sasaki, S. Tsujimoto, and A. Zhedanov, Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations, J. Phys. A 43 (2010) 315204. [25] G. Szegö, Orthogonal polynomials, Colloquium Publications 23, American Mathematical Society, Providence, 1939. [26] T. Tanaka, N-fold Supersymmetry and quasi-solvability associated with X2-Laguerre polynomials, J. Math. Phys. 51 (2010) 032101 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- gomez-ullate09preprint.pdf
- Size:
- 170.34 KB
- Format:
- Adobe Portable Document Format