Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Selective growth of ZnO micro- and nano-structures on fs-laser processed metallic Zn substrates for large area applications

Loading...
Thumbnail Image

Full text at PDC

Publication date

2025

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

R. Ariza, A. Urbieta, A. Ferreiro, M.E. Rabanal, P. Fernández, J. Solis, Selective growth of ZnO micro- and nano-structures on fs-laser processed metallic Zn substrates for large area applications, Journal of Alloys and Compounds 1010 (2025) 177797.

Abstract

The synthesis of large area micro- and nano-structured ZnO surfaces has been successfully achieved through a two-step process. It involves the irradiation of Zn metal sheets with femtosecond laser pulses (350 fs at 1030 nm) at high repetition rates (100–500 kHz), and fast scanning speeds (cm/s). Subsequently, the irradiated sheets are thermally treated in an Argon flux at 380 ◦C, a temperature significantly lower than that typically required for growing micro- and nanostructures in ZnO. Fs-laser irradiation promotes the initial development of topography and the localized oxidation of the metal. This enables the further growth of micro- and nanostructures at preferential sites with good crystalline quality and luminescent properties. Analysis of the material at different processing steps shows that the initial laser-induced oxidation is crucial in defining ZnO growth mechanisms upon thermal treatment, and determining the final properties. We have tested the potential use of these structures as reusable photocalyst. The ease of catalyst recovery in photocatalysis experiments and the degree of degradation achieved may be considered as key performance indicators. Photocatalytic activity tests performed with a Rhodamine B solution showed degradation values up to 43 % over 90 min. The morphology of the simples remains unaltered after photocatalysis experiments.

Research Projects

Organizational Units

Journal Issue

Description

MSCA-101149132

Keywords

Collections