On hyperbolic 3-manifolds with an infinite number of fibrations over S1
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Lozano Imízcoz, María Teresa | |
dc.contributor.author | Montesinos Amilibia, José María | |
dc.date.accessioned | 2023-06-20T10:36:38Z | |
dc.date.available | 2023-06-20T10:36:38Z | |
dc.date.issued | 2006-01 | |
dc.description.abstract | W. P. Thurston [Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130;] showed that if a hyperbolic 3-manifold with b1>1 fibers over S1, then it fibers in infinitely many different ways. In this paper, the authors consider a certain family of hyperbolic manifolds, obtained as branched covers of the 3-torus. They show explicitly that each manifold in this family has infinitely many different fibrations. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22348 | |
dc.identifier.doi | 10.1017/S0305004105008868 | |
dc.identifier.issn | 0305-0041 | |
dc.identifier.officialurl | http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=368201 | |
dc.identifier.relatedurl | http://www.cambridge.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50761 | |
dc.issue.number | 1 | |
dc.journal.title | Mathematical Proceedings of the Cambridge Philosophical Society | |
dc.language.iso | eng | |
dc.page.final | 93 | |
dc.page.initial | 79 | |
dc.publisher | Cambridge Univ Press | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | 3-manifolds | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | On hyperbolic 3-manifolds with an infinite number of fibrations over S1 | |
dc.type | journal article | |
dc.volume.number | 140 | |
dcterms.references | D. Gabai. On 3-manifolds finitely covered by surface bundles. Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984). London Math. Soc. Lecture Note Ser. 112 (Cambridge University Press, 1986) 145–155. H. M. Hilden, M. T. Lozano, J. M. Montesinos and W. C. Whitten. On universal groups and three-manifolds. Invent. Math. 87(3) (1987), 441–456. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. On the Borromean orbifolds: geometry and arithmetic. In TOPOLOGY '90. Ohio State Univ. Math. Res. Inst. Publ. 1 (1992), 133–167. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. The arithmeticity of certain torus bundle cone 3-manifolds and hyperbolic surface bundle 3-manifolds; and an enhanced arithmeticity test. in KNOTS '96 (Tokyo) (World Sci. Publishing, 1997), 73–80. T. Jørgensen. Compact 3-manifolds of constant negative curvature fibering over the circle. Ann. Math. (2) 106(1) (1977), 61–72. M. T. Lozano and C. Safont. Virtually regular coverings. Proc. Amer. Math. Soc. 106(1) (1989), 207–214. A. W. Reid. A non-Haken hyperbolic 3-manifold covered by a surface bundle. Pacific J. Math. 167(1) (1995), 163–182. MR1318168 (95m:57025) W. P. Thurston. Three-dimensional geometry and topology, vol. 1. Princeton Math. Ser. 35 (1997) (Ed. Silvio Levy). MR1435975 (97m:57016) J. Tollefson. 3-manifolds fibering over S1 with nonunique connected fiber. Proc. Amer. Math. Soc. 21 (1969), 79–80. MR0236945 (38 #5238 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1