Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On hyperbolic 3-manifolds with an infinite number of fibrations over S1

dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T10:36:38Z
dc.date.available2023-06-20T10:36:38Z
dc.date.issued2006-01
dc.description.abstractW. P. Thurston [Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130;] showed that if a hyperbolic 3-manifold with b1>1 fibers over S1, then it fibers in infinitely many different ways. In this paper, the authors consider a certain family of hyperbolic manifolds, obtained as branched covers of the 3-torus. They show explicitly that each manifold in this family has infinitely many different fibrations.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22348
dc.identifier.doi10.1017/S0305004105008868
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=368201
dc.identifier.relatedurlhttp://www.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50761
dc.issue.number1
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final93
dc.page.initial79
dc.publisherCambridge Univ Press
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keyword3-manifolds
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn hyperbolic 3-manifolds with an infinite number of fibrations over S1
dc.typejournal article
dc.volume.number140
dcterms.referencesD. Gabai. On 3-manifolds finitely covered by surface bundles. Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984). London Math. Soc. Lecture Note Ser. 112 (Cambridge University Press, 1986) 145–155. H. M. Hilden, M. T. Lozano, J. M. Montesinos and W. C. Whitten. On universal groups and three-manifolds. Invent. Math. 87(3) (1987), 441–456. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. On the Borromean orbifolds: geometry and arithmetic. In TOPOLOGY '90. Ohio State Univ. Math. Res. Inst. Publ. 1 (1992), 133–167. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia. The arithmeticity of certain torus bundle cone 3-manifolds and hyperbolic surface bundle 3-manifolds; and an enhanced arithmeticity test. in KNOTS '96 (Tokyo) (World Sci. Publishing, 1997), 73–80. T. Jørgensen. Compact 3-manifolds of constant negative curvature fibering over the circle. Ann. Math. (2) 106(1) (1977), 61–72. M. T. Lozano and C. Safont. Virtually regular coverings. Proc. Amer. Math. Soc. 106(1) (1989), 207–214. A. W. Reid. A non-Haken hyperbolic 3-manifold covered by a surface bundle. Pacific J. Math. 167(1) (1995), 163–182. MR1318168 (95m:57025) W. P. Thurston. Three-dimensional geometry and topology, vol. 1. Princeton Math. Ser. 35 (1997) (Ed. Silvio Levy). MR1435975 (97m:57016) J. Tollefson. 3-manifolds fibering over S1 with nonunique connected fiber. Proc. Amer. Math. Soc. 21 (1969), 79–80. MR0236945 (38 #5238
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos72.pdf
Size:
545.24 KB
Format:
Adobe Portable Document Format

Collections