Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

From the Fermi-Walker to the Cartan connection

dc.contributor.authorLafuente López, Javier
dc.contributor.authorSalvador, Beatriz
dc.date.accessioned2023-06-20T18:41:52Z
dc.date.available2023-06-20T18:41:52Z
dc.date.issued2000
dc.descriptionJan Slovák and Martin Čadek (eds.): Proceedings of the 19th Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 2000. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 63. pp. 149--156.
dc.description.abstractLet M be a differentiable manifold and C ={e2org / a : M -> R } a Riemannian conformal structure on M. Given any regular curve in M, 7 : I -> M, there is a natural way of defining an operator, D/dt: £(7) -> £(7), the Fermi-Walker connection along 7, which only depends on the conformal structure C, and such that it coincides with the Fermi-Walker connection along 7 -in the classical sense- of any g € C such that g("y'(t),y'(t)) = 1 Vt G I. This Fermi- Walker connection enables us to construct a lift-function Kb : T*M -> TbCO(M) for every b G CO(M), and p = n(b), n : CO(M) —> M being the usual projection. In some sense, Kb combines all the different lift-functions TPM -> T6CO(M) given by the Levi-Civita connections of the compatibles metrics g € C. But over all, Kb determines the conformal structure C over M, so that it may be used to know about the normal Cartan connection and the Weyl conformal curvature tensor.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20348
dc.identifier.issn0009-725X
dc.identifier.officialurlhttp://dml.cz/dmlcz/701657
dc.identifier.relatedurlhttp://dml.cz/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58340
dc.issue.number63
dc.journal.titleRendiconti del Circolo Matematico di Palermo
dc.language.isoeng
dc.page.final156
dc.page.initial149
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu514.7
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleFrom the Fermi-Walker to the Cartan connection
dc.typejournal article
dc.volume.numberSerie
dcterms.referencesB. O'Neill, Semi-Riemannian Geometry with applicatins to relativity. Academic Press Inc, 1983. Wfalter A. Poor, Differential Geometric structures. McGraw-Hill Book Company, 1981. S.-T. Yau R. Schoen, Lectures on Differential Geometry. International Press, 1994. H.Wu R.K.Sachs, General Relativity for Mathematicians. Springer-Verlag, 1977. J Lafontaine S. Gallot, D. Hulin, Riemannian Geometry. Springer-Verlag, 1993. J. A. Schouten, Ricci-Calculus. Springer-Verlag, 1954. S.Kobayashi, Transformation Groups in Differential Geometry. Springer-Verlag, 1972. K.Nomizu S.Kobayashi, Foundations of Differential Geometry. Interscience Publisher, 1963. S. Sternberg, Lectures on Differential Geometry. Prentice Hall Inc., 1964. S. Haperlin W. Greub, Connections, Curvature and Cohomology. Academic Press, 1973. Kentaro Yano, Integral formulas in Riemannian Geometry. Marcel Dekker Inc, 1970.
dspace.entity.typePublication
relation.isAuthorOfPublication38d24ccf-5c11-420a-8fac-487c18b5cc1b
relation.isAuthorOfPublication.latestForDiscovery38d24ccf-5c11-420a-8fac-487c18b5cc1b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lafuente06.pdf
Size:
886.76 KB
Format:
Adobe Portable Document Format

Collections