Hyperelliptic Klein surfaces with maximal symmetry
dc.book.title | Low Dimensional Topology and Kleinian Groups: Warwick and Durham | |
dc.contributor.author | Bujalance García, Emilio | |
dc.contributor.author | Etayo Gordejuela, José Javier | |
dc.contributor.editor | Epstein, D.B.A. | |
dc.date.accessioned | 2023-06-21T02:42:30Z | |
dc.date.available | 2023-06-21T02:42:30Z | |
dc.date.issued | 1986 | |
dc.description.abstract | A Klein surface S is a surface with a dianalytic structure. If S is compact then its underlying topological surface can be orientable or nonorientable and may have boundary. The genus of S is then defined to be the genus of its canonical double which becomes the complex double S ˆ of S when given the canonical complex structure. We call S hyperelliptic if S ˆ is a hyperelliptic Riemann surface. The automorphism group of a Klein surface of genus g is bounded above by 12(g−1) [N. Greenleaf and C. L. May , Trans. Amer. Math. Soc. 274 (1982), no. 1, 265--283]. In the present paper the authors prove that if S is a hyperelliptic Klein surface with 12(g−1) automorphisms then S is homeomorphic to a sphere with 3 holes or a torus with 1 hole. The subspace of Teichmüller space corresponding to these surfaces is briefly considered and shown to consist of submanifolds of dimension 1. The proofs use the algebraic structure of NEC groups. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15751 | |
dc.identifier.isbn | 0521339057 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/65420 | |
dc.issue.number | 112 | |
dc.page.final | 296 | |
dc.page.initial | 289 | |
dc.publication.place | Cambridge | |
dc.publisher | Cambridge University Press | |
dc.relation.ispartofseries | London Mathematical Society lecture notes series | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512.54 | |
dc.subject.keyword | Fuchsian groups and automorphic functions | |
dc.subject.keyword | Algebraic geometry | |
dc.subject.keyword | Fuchsian groups and their generalizations | |
dc.subject.ucm | Grupos (Matemáticas) | |
dc.title | Hyperelliptic Klein surfaces with maximal symmetry | en |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2275e5ec-53a7-4e0f-82d6-517cdf4cd56c | |
relation.isAuthorOfPublication.latestForDiscovery | 2275e5ec-53a7-4e0f-82d6-517cdf4cd56c |