Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Trained Behavior Trees: Programming by Demonstration to Support AI Game Designers

dc.contributor.authorSagredo Olivenza, Ismael
dc.contributor.authorGómez Martín, Pedro Pablo
dc.contributor.authorGómez Martín, Marco Antonio
dc.contributor.authorGonzález Calero, Pedro Antonio
dc.date.accessioned2024-02-08T14:42:51Z
dc.date.available2024-02-08T14:42:51Z
dc.date.issued2019
dc.description.abstractProgramming by demonstration (PbD) has a straightforward application in the development of the artificial intelligence (AI) for nonplayer characters (NPCs) in a video game: a game designer controls the NPC during a training session in the game, and thus demonstrates the expected behavior for that character in different situations. Afterwards, applying some machine learning technique on the traces recorded during the demonstration, an AI for the NPC can be generated. Nevertheless, with this approach, it is very hard for the game designer to fully control the resulting behavior, which is a key requirement for game designers, who are responsible for putting together a fun experience for the player. In this paper, we present trained behavior trees (TBTs). TBTs are behavior trees (BTs) generated from traces obtained in a game through PbD. BTs are a technique widely used for AI game programming that are created and modified through special purpose visual editors. By inducing a BT from a PbD game session, we combine the ease of use of PbD with the ability to fine-tune the learned behavior of BTs. Furthermore, TBTs facilitate the use of BTs by game designers and promote their authoring control on game AI.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia (España)
dc.description.statuspub
dc.identifier.citationI. Sagredo-Olivenza, P. P. Gómez-Martín, M. A. Gómez-Martín and P. A. González-Calero, "Trained Behavior Trees: Programming by Demonstration to Support AI Game Designers," in IEEE Transactions on Games, vol. 11, no. 1, pp. 5-14, March 2019, doi: 10.1109/TG.2017.2771831.
dc.identifier.doi10.1109/TG.2017.2771831
dc.identifier.issn2475-1510
dc.identifier.officialurlhttps://doi.org/10.1109/TG.2017.2771831
dc.identifier.urihttps://hdl.handle.net/20.500.14352/100499
dc.issue.number1
dc.journal.titleIEEE Transactions on Games
dc.language.isoeng
dc.page.final13
dc.page.initial5
dc.publisherIEEE
dc.rights.accessRightsrestricted access
dc.subject.keywordBehavior trees (BTs)
dc.subject.keywordDecision trees
dc.subject.keywordKnowledge acquisition
dc.subject.keywordMachine learning
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleTrained Behavior Trees: Programming by Demonstration to Support AI Game Designers
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationef9526b3-169c-4e45-b8f9-2e82965baecb
relation.isAuthorOfPublication47690a94-e97c-4f96-917d-569d14ecba3b
relation.isAuthorOfPublication166cd6d0-8699-42cc-bdf7-c6e8a2c48741
relation.isAuthorOfPublication.latestForDiscoveryef9526b3-169c-4e45-b8f9-2e82965baecb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Trained_Behavior_Trees.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format

Collections