Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Janus: an FPGA-based system for high-performance scientific computing

dc.contributor.authorFernández Pérez, Luis Antonio
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorMuñoz Sudupe, Antonio
dc.contributor.authorYllanes, D.
dc.contributor.authorotros, ...
dc.date.accessioned2023-06-20T04:14:06Z
dc.date.available2023-06-20T04:14:06Z
dc.date.issued2009-01
dc.description© 2009, IEEE. Artículo firmado por 23 autores. We thank M. Lena and S. Sialino for their outstanding support during the commissioning of the first JANUS system.
dc.description.abstractThis paper describes JANUS, a modular massively parallel and reconfigurable FPGA-based computing system. Each JANUS module has a computational core and a host. The computational core is a 4x4 array of FPGA-based processing elements with nearest-neighbor data links. Processors are also directly connected to an I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for, but not limited to, the requirements of a class of hard scientific applications characterized by regular code structure, unconventional data manipulation instructions and not too large data-base size. We discuss the architecture of this configurable machine, and focus on its use on Monte Carlo simulations of statistical mechanics. On this class of application JANUS achieves impressive performances: in some cases one JANUS processing element outperfoms high-end PCs by a factor ≈1000. We also discuss the role of JANUS on other classes of scientific applications.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37938
dc.identifier.doi10.1109/MCSE.2009.11
dc.identifier.issn1521-9615
dc.identifier.officialurlhttp://dx.doi.org/10.1109/mcse.2009.11
dc.identifier.relatedurlhttp://ieeexplore.ieee.org/
dc.identifier.relatedurlhttps://arxiv.org/pdf/0710.3535.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45073
dc.issue.number1
dc.journal.titleComputing in science & engineering
dc.language.isoeng
dc.page.final58
dc.page.initial48
dc.publisherIEEE Computer Soc.
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.cdu51-73
dc.subject.keywordImpurities
dc.subject.keywordIanus.
dc.subject.ucmFísica (Física)
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.unesco22 Física
dc.titleJanus: an FPGA-based system for high-performance scientific computing
dc.typejournal article
dc.volume.number11
dcterms.references[1] D. P. Landau, K. Binder, “A Guide to Monte Carlo Simulations in Statistical Physics”, Cambridge University Press, (2005). [2] see the papers contained in the special issue of Computing in Science and Engineering, vol 8, number 1, January/February 2006, (S. Gottlieb Guest Editor). [3] see for instance P. Young, “Spin Glasses and Random Fields” World Scientific, (1998). [4] K. Huang, ”Statistical Mechanics”, Wiley (1987). [5] B. M. Forrest, L. H. Tang, J. Stat. Phys., 60, (1990) 181 [6] K. Asanovic, et al., “The Landscape of Parallel Computing Research: A View from Berkeley”, Tech. Report, UCB/EECS-2006-183, (2006). [7] F. Belletti, et al., “JANUS: An Adaptive FPGA Computer”, Computing in Science and Engineering, vol 8, number 1, January/February 2006, 41. [8] A. Cruz, et al., Comp. Phys. Comm., 133, (2001) 165. [9] G. Parisi, F. Rapuano, Phys. Lett. B, 157, (1985) 301 [10] S. Sumimoto, et al., “The design and evaluation of high performance communication using a Gigabit Ethernet”, Proceedings of the 13th international conference on Supercomputing, (1999) 260. [11] Belletti, et al., “Simulating spin systems on IANUS, an FPGA-based computer”, Computer Physics Communications, 178/3, pp. 208-216 (2008). [12] R. L. Brooks, ”On colouring the nodes of a network”. Proc. Cambridge Phil. Soc., 37: 194-197 (1941) [13] D. S. Johnson, et al., “Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning”, Operations Research, 39, 378-406 (1991) [14] F.Y. Wu, Rev. Mod. Phys., 54, 235 (1982). [15] E. Domany, M. Schick, J. S. Walker, Phys. Rev. Lett., 38, 1148 (1977). [16] R. L. Park, T. L. Einstein, A. R. Kortan, L. D. Roelofs, in Ordering in Two Dimensions, edited by S. K. Sinha (North-Holland, New York), p.17 (1980). [17] L. Schwenger, K. Budde, C. Voges, H. Pfnür, Phys. Rev. Lett., 73, 296 (1994) -- ibid., Phys. Rev. B, 52, 9275 (1995). [18] E. Domany, Y. Shnidman, D. Mukamel, J. Phys. C., 15 L, 495 (1982). [19] E. Marinari, S. Mossa, G. Parisi, Phys. Rev. B, 59, 8401 (1999). [20] F. Belletti, et al., QCD on the Cell Broadband Engine, Proceedings of Science (PoS) (Lattice 2007) 039.
dspace.entity.typePublication
relation.isAuthorOfPublication146096b1-5825-4230-8ad9-b2dad468673b
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication33f82d50-c0e4-4628-a384-f8b256a4a84e
relation.isAuthorOfPublication.latestForDiscovery146096b1-5825-4230-8ad9-b2dad468673b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezPérezLuisAntonio77LIBRE PREPRINT.pdf
Size:
595.07 KB
Format:
Adobe Portable Document Format

Collections