Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fixed point index and decompositions of planar invariant compacta

dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.contributor.authorSalazar, J. M.
dc.date.accessioned2023-06-20T09:46:46Z
dc.date.available2023-06-20T09:46:46Z
dc.date.issued2004
dc.description.abstractLet U c R2 be an open subset and let f :U → f (U) c R2 be a homeomorphism. Let M = M1 U· · ·U Mr C U be a disjoint union of discs that isolates the invariant compactum K. The aimof this paper is to study the dynamics of f in K and to use the fixed point index to detect, in a simple and geometric way, the existence of periodic orbits on which f follows a determined pattern. Our method allows us to compute the fixed point index of every iteration of f in a neighborhood of the periodic orbits following a given itinerary in classical and important semidynamical systems with chaotic dynamics.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMCyT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19875
dc.identifier.doi10.1016/j.topol.2003.12.013
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/01668641
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50345
dc.issue.number1-3
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final223
dc.page.initial207
dc.publisherElsevier Science
dc.relation.projectIDBMF2000-0804-C03-01
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordFixed point index
dc.subject.keywordConley index
dc.subject.keywordFiltration pairs
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleFixed point index and decompositions of planar invariant compacta
dc.typejournal article
dc.volume.number141
dcterms.referencesK. Borsuk, Theory of Shape, in: Monografie Mat., vol. 59, PWN, Warsaw, 1975. K. Borsuk, Theory of Retracts, in: Monografie Mat., vol.44, PWN, Warsaw, 1967. R.F. Brown, The Lefschetz Fixed Point Theorem, Scott Foreman, Glenview, IL, 1971. P. Le Calvez, J.C. Yoccoz, Un théoréme d’indice pour les homéomorphismes du plan au voisinage d’un point fixe, Ann. of Math. 146 (1997) 241–293. C.O. Christenson, W.L. Voxman, Aspects of Topology, BCS Associates, Moscow, ID, 1998. A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965)1–8. J. Franks, The Conley index and non-existence of minimal homeomorphisms, Illinois J. Math. 43 (3) (1999)457–464. J. Franks, D. Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc. 352 (7) (2000)3305–3322. M. Gidea, Leray functor and orbital Conley index for non-invariant sets, Discrete Continuous Dynamical Systems 5 (1999) 617–630. M. Gidea, The Conley index and countable decompositions of invariant sets, in: Conley Index Theory, in:Banach Center Publ., vol. 47, Polish Academy of Sciences, Warsaw, 1999, pp. 91–108. B. Kerékjártó, Voresungen über Topologie (I), Springer,Berlin, 1923. M. Mrozek, Index pairs and the fixed point index for semidynamical systems with discrete time, Fund.Math. 133 (1989). M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer.Math. Soc. 318 (1990) 149–178. M. Mrozek, Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces, Fund. Math. 145 (1994). M. Mrozek, K.P. Rybakowski, A cohomological Conley index for maps on metrics spaces, J. Differential Equations 90 (1991) 143–171. R.D. Nussbaum, The fixed point index and some applications, in: Séminaire de Mathématiques Supérieures,Les Presses de L’Université de Montréal, 1985. J.W. Robbin, D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynamical Systems 8 (1988) 375–393. F.R. Ruiz del Portal, J.M. Salazar, Fixed point index of iterations of local homeomorphisms of the plane: A Conley-index approach, Topology 41 (2002) 1199–1212. F.R. Ruiz del Portal, J.M. Salazar, Shape index in metric spaces, Fund. Math. 176 (2003) 47–62. F.R. Ruiz del Portal, J.M. Salazar, A stable/unstable manifold theorem for local homeomorphisms of the plane, Ergodic Theory and Dynamical Systems, submitted for ublication. A. Szymczak, The Conley index for discrete semidynamical systems, Topology Appl. 66 (3) (1995) 215–240. A. Szymczak, The Conley index for decompositions of isolated invariant sets, Fund. Math. 133 (1995) 71–90. A. Szymczak, The Conley index and symbolic dynamics,Topology 35 (1996) 287–299. P. Zgliczynski, Fixed point index for iterations, topological horseshoe and chaos, Topological Methods Nonlinear Anal. 8 (1996) 169–177.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RomeroRuiz13.pdf
Size:
371.58 KB
Format:
Adobe Portable Document Format

Collections