Polynomial convergence of sequences in Banach spaces.
dc.contributor.author | Bombal Gordón, Fernando | |
dc.contributor.author | Fernández Unzueta, M. | |
dc.date.accessioned | 2023-06-20T18:41:19Z | |
dc.date.available | 2023-06-20T18:41:19Z | |
dc.date.issued | 2000-01-01 | |
dc.description.abstract | Let E be a (complex) Banach space and n be a positive integer, and denote by P( n E) the space of all n -homogeneous polynomials on E . The authors say that E has the m -FJ property (m -Farmer-Johnson property) if, whenever (x n ) n is a sequence in E which converges weakly to x in E and P(x n ) converges to P(x) for all P∈P( m E) , then Q(x n ) converges to Q(x) for all Q∈P( k E) for all k , 1≤k≤m . If all m -homogeneous polynomials are weakly sequentially continuous, then E has the m -FJ property. Using this observation, the authors give an alternative proof of the result that if E is a Banach space such that every m -homogeneous polynomial on E is weakly continuous on bounded sets then every k -homogeneous polynomial, 1≤k≤m , is weakly continuous on bounded sets [C. Boyd and R. A. Ryan, Arch. Math. (Basel) 71 (1998), no. 3, 211–218;]. It is shown that the m -FJ property is equivalent to the condition that, whenever y∈E and (x n ) n is a sequence in E which converges weakly to x in E and moreover P(x n ) converges to P(x) for all P∈P( m E) , then P(x n +y) converges to P(x+y) for all P∈P( m E) . The main result of the paper is the following: Let E be a Banach space with an unconditional decomposition E=∑ ∞ k=1 E k . Suppose each E k is a Banach space such that, if (x n ) n is a sequence in E k with the property that whenever x n converges weakly to x and P(x n ) converges to P(x) for all P∈P( m E k ) , then x k converges in norm to x . Then E has the m -FJ property. If J denotes the James space, a corollary to the main theorem is that the space (∑⊗J) l p , 1≤p<∞ , has the m -FJ property for every integer m . | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20075 | |
dc.identifier.issn | 1137-2141 | |
dc.identifier.officialurl | http://www.rac.es/4/4_7_1.php?pid=Revistas:REV_20091030_01548&pageNum=2 | |
dc.identifier.relatedurl | http://www.rac.es/0/0_1.php | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58310 | |
dc.issue.number | 1 | |
dc.journal.title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. | |
dc.language.iso | eng | |
dc.page.final | 13 | |
dc.page.initial | 9 | |
dc.publisher | Real Academia de Ciencias Exactas, Físicas y Naturales | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.647 | |
dc.subject.keyword | polynomials on Banach spaces | |
dc.subject.keyword | unconditional Schauder decomposition | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Polynomial convergence of sequences in Banach spaces. | |
dc.type | journal article | |
dc.volume.number | 94 | |
dcterms.references | R. Alencar, R.M. Aron, S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc., 90 (1984), 407-411. F. Bombal, On polynomial properties in Banach spaces, Atti. Sem. Mat. Fis. Univ. Modena, XLIV, (1996) 135-146. C. Boyd, R.A. Ryan, Bounded weak continuity of homogeneous polynomials at the origin, Arch. Math. (Basel) 71 (1998), no. 3, 211-218. J.M.F. Castillo, R. García, R. Gonzalo, Banach spaces in which all multilinear forms are weakly sequentially continuous, to appear. J. Farmer, W.B. Johnson Polynomial Schur and Polynomial Dunford-Pettis properties, Banach Spaces, Contemporary Mathematics, Vol.144 (Bor-Luh Lin,ed.), Amer. Math. Soc., Providence, Rhode Island (1993). J. Ferrera, J. Gómez Gil, J.G. Llavona, On completion of spaces of weakly continuous functions, Bull. London Math. Soc., 15 (1983), 260-264. M. González, J.M. Gutiérrez. Gantmacher type theorems for holomorphic mappings, Math. Nachr. 186 (1997), 131-145. [8] M. Gonz´alez, J. M. Gutiérrez, Unconditionally converging polynomials on Banach spaces, Mat. Proc. Camb. Phi. Soc. (1995), 117, 321-331. R. Gonzalo, J. A. Jaramillo, Compact polynomials between Banach spaces, Proc. Royal Irish Acad., Vol. 95A, No. 2 (1995), 213-226. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, Springer-Verlag, Berlin-New York, Vol. I, (1977); Vol. II (1979). J. Mujica, Complex analysis in Banach spaces, Math. Studies No. 120 (North-Holland, 1986). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1