Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Polynomial convergence of sequences in Banach spaces.

dc.contributor.authorBombal Gordón, Fernando
dc.contributor.authorFernández Unzueta, M.
dc.date.accessioned2023-06-20T18:41:19Z
dc.date.available2023-06-20T18:41:19Z
dc.date.issued2000-01-01
dc.description.abstractLet E be a (complex) Banach space and n be a positive integer, and denote by P( n E) the space of all n -homogeneous polynomials on E . The authors say that E has the m -FJ property (m -Farmer-Johnson property) if, whenever (x n ) n is a sequence in E which converges weakly to x in E and P(x n ) converges to P(x) for all P∈P( m E) , then Q(x n ) converges to Q(x) for all Q∈P( k E) for all k , 1≤k≤m . If all m -homogeneous polynomials are weakly sequentially continuous, then E has the m -FJ property. Using this observation, the authors give an alternative proof of the result that if E is a Banach space such that every m -homogeneous polynomial on E is weakly continuous on bounded sets then every k -homogeneous polynomial, 1≤k≤m , is weakly continuous on bounded sets [C. Boyd and R. A. Ryan, Arch. Math. (Basel) 71 (1998), no. 3, 211–218;]. It is shown that the m -FJ property is equivalent to the condition that, whenever y∈E and (x n ) n is a sequence in E which converges weakly to x in E and moreover P(x n ) converges to P(x) for all P∈P( m E) , then P(x n +y) converges to P(x+y) for all P∈P( m E) . The main result of the paper is the following: Let E be a Banach space with an unconditional decomposition E=∑ ∞ k=1 E k . Suppose each E k is a Banach space such that, if (x n ) n is a sequence in E k with the property that whenever x n converges weakly to x and P(x n ) converges to P(x) for all P∈P( m E k ) , then x k converges in norm to x . Then E has the m -FJ property. If J denotes the James space, a corollary to the main theorem is that the space (∑⊗J) l p , 1≤p<∞ , has the m -FJ property for every integer m .
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20075
dc.identifier.issn1137-2141
dc.identifier.officialurlhttp://www.rac.es/4/4_7_1.php?pid=Revistas:REV_20091030_01548&pageNum=2
dc.identifier.relatedurlhttp://www.rac.es/0/0_1.php
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58310
dc.issue.number1
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales.
dc.language.isoeng
dc.page.final13
dc.page.initial9
dc.publisherReal Academia de Ciencias Exactas, Físicas y Naturales
dc.rights.accessRightsrestricted access
dc.subject.cdu512.647
dc.subject.keywordpolynomials on Banach spaces
dc.subject.keywordunconditional Schauder decomposition
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titlePolynomial convergence of sequences in Banach spaces.
dc.typejournal article
dc.volume.number94
dcterms.referencesR. Alencar, R.M. Aron, S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc., 90 (1984), 407-411. F. Bombal, On polynomial properties in Banach spaces, Atti. Sem. Mat. Fis. Univ. Modena, XLIV, (1996) 135-146. C. Boyd, R.A. Ryan, Bounded weak continuity of homogeneous polynomials at the origin, Arch. Math. (Basel) 71 (1998), no. 3, 211-218. J.M.F. Castillo, R. García, R. Gonzalo, Banach spaces in which all multilinear forms are weakly sequentially continuous, to appear. J. Farmer, W.B. Johnson Polynomial Schur and Polynomial Dunford-Pettis properties, Banach Spaces, Contemporary Mathematics, Vol.144 (Bor-Luh Lin,ed.), Amer. Math. Soc., Providence, Rhode Island (1993). J. Ferrera, J. Gómez Gil, J.G. Llavona, On completion of spaces of weakly continuous functions, Bull. London Math. Soc., 15 (1983), 260-264. M. González, J.M. Gutiérrez. Gantmacher type theorems for holomorphic mappings, Math. Nachr. 186 (1997), 131-145. [8] M. Gonz´alez, J. M. Gutiérrez, Unconditionally converging polynomials on Banach spaces, Mat. Proc. Camb. Phi. Soc. (1995), 117, 321-331. R. Gonzalo, J. A. Jaramillo, Compact polynomials between Banach spaces, Proc. Royal Irish Acad., Vol. 95A, No. 2 (1995), 213-226. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, Springer-Verlag, Berlin-New York, Vol. I, (1977); Vol. II (1979). J. Mujica, Complex analysis in Banach spaces, Math. Studies No. 120 (North-Holland, 1986).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bombal74.pdf
Size:
173.69 KB
Format:
Adobe Portable Document Format

Collections