On the Representation of Orthogonally Additive Polynomials in l(p)
dc.contributor.author | Llavona, José G. | |
dc.contributor.author | Linares Briones, Pablo | |
dc.contributor.author | Ibort Latre, Luis Alberto | |
dc.date.accessioned | 2023-06-20T00:14:00Z | |
dc.date.available | 2023-06-20T00:14:00Z | |
dc.date.issued | 2009-06 | |
dc.description.abstract | We present a new proof of a Sundaresan's result which shows that the space of orthogonally additive polynomials P-0((k)l(p)) is isometrically isomorphic to l(p/p-k) if k < p < infinity and to l(infinity) if 1 <= p <= k. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MEC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15897 | |
dc.identifier.doi | 10.2977/prims/1241553128 | |
dc.identifier.issn | 0034-5318 | |
dc.identifier.officialurl | http://www.kurims.kyoto-u.ac.jp/~prims/pdf/45-2/45-2-14.pdf | |
dc.identifier.relatedurl | http://www.kurims.kyoto-u.ac.jp/en/index.html | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42242 | |
dc.issue.number | 2 | |
dc.journal.title | Publications of the Research Institute for Mathematical Sciences | |
dc.language.iso | eng | |
dc.page.final | 524 | |
dc.page.initial | 519 | |
dc.publisher | European Mathematical Society | |
dc.relation.projectID | MTM 2004-07090-C03 | |
dc.relation.projectID | MTM 2006-03531 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.5 | |
dc.subject.keyword | Orthogonally additive polynomials | |
dc.subject.keyword | Tensor diagonal | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | On the Representation of Orthogonally Additive Polynomials in l(p) | |
dc.type | journal article | |
dc.volume.number | 45 | |
dcterms.references | R. M. Aron and J. Globevnik, Analytic functions on c0, Rev. Mat. Univ. Complut. Madrid 2 (1989), suppl., 27–33. Y. Benyamini, S. Lassalle and J. G. Llavona, Homogeneous orthogonally additive polynomials on Banach lattices, Bull. London Math. Soc. 38 (2006), no. 3, 459–469. D. Carando, S. Lassalle and I. Zalduendo, Orthogonally additive polynomials over C(K) are measures—a short proof, Integral Equations Operator Theory 56 (2006), no. 4, 597– 602. S. Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer, London, 1999. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Springer, Berlin, 1979. [6] J. Mujica, Complex analysis in Banach spaces, North-Holland, Math. Studies, 120, Amsterdam, 1986. D. Pérez-García and I. Villanueva, Orthogonally additive polynomials on spaces of continuous functions, J. Math. Anal. Appl. 306 (2005), no. 1, 97–105. R. A. Ryan, Introduction to tensor products of Banach spaces, Springer, London, 2002. K. Sundaresan, Geometry of spaces of homogeneous polynomials on Banach lattices, in Applied geometry and discrete Mathematics, 571–586, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991. I. Zalduendo, An estimate for multilinear forms on _p spaces, Proc. Roy. Irish Acad. Sect. A 93 (1993), no. 1, 137–142. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | fa458df3-a349-484f-9d64-8fea17efb9d4 | |
relation.isAuthorOfPublication.latestForDiscovery | fa458df3-a349-484f-9d64-8fea17efb9d4 |
Download
Original bundle
1 - 1 of 1