Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Very Weak Positive Solutions to Some Semilinear Elliptic Problems With Simultaneous Singular Nonlinear and Spatial Dependence Terms

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorHernández, J.
dc.contributor.authorRakotoson, Jean Michel Theresien
dc.date.accessioned2023-06-20T00:10:49Z
dc.date.available2023-06-20T00:10:49Z
dc.date.issued2011
dc.description.abstractWe use recent results by Diaz and Rakotoson concerning very weak solutions to linear boundary value problems in order to improve previous work on existence and properties of weak positive solutions to a model example of semilinear singular elliptic problem.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipDGISPI (Spain)
dc.description.sponsorshipUCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15008
dc.identifier.doi10.1007/s00032-011-0151-x
dc.identifier.issn1424-9286
dc.identifier.officialurlhttp://www.springerlink.com/content/r17l23wm637r5483/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42140
dc.issue.number1
dc.journal.titleMilan Journal of Mathematics
dc.language.isoeng
dc.page.final245
dc.page.initial233
dc.publisherBirkhäuser
dc.relation.projectIDFIRST (238702)
dc.relation.projectIDMTM200806208
dc.relation.projectIDResearch Group MOMAT (910480)
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordBoundary-value problem
dc.subject.keyworddirichlet problem
dc.subject.keywordequations
dc.subject.keywordexistence
dc.subject.keywordNonlinear singular elliptic equations
dc.subject.keywordpositive very weak solutions
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleOn Very Weak Positive Solutions to Some Semilinear Elliptic Problems With Simultaneous Singular Nonlinear and Spatial Dependence Terms
dc.typejournal article
dc.volume.number79
dcterms.references1.H. Brezis, Une équation semi-linéaire avec conditions aux limites dans L 1, unpublished. Personal communication to J.I. Díaz. 2.Brezis H, Cazenave T, Martel Y, Raminandrisoa A.: Blow-up for u t − Δ u = g(u) revisited. Adv. Differential Equations 1, 72–90 (1996) 3.Brezis H, Strauss W.: Semilinear Elliptic Equations in L1. J. Math. Soc. Japan 25, 565–590 (1973) 4.Coclite M.M.: On a singular nonlinear Dirichlet problem II. Bolletino Unione Mat. Ital. B 5, 955–975 (1991) 5.Coclite M.M.: On a singular nonlinear Dirichlet problem III. Nonlinear Anal. 21, 547–564 (1993) 6.Coclite M.M.: On a singular nonlinear Dirichlet problem IV. Nonlinear Anal. 23, 925–936 (1994) 7.Crandall M.G, Rabinowitz P.H, Tartar L.: On a Dirichlet problem with singular nonlinearity. Comm. PDEs 2, 193–222 (1977) 8.del Pino M.: A global estimate for the gradient in a singular elliptic boundary value problem. Proc. Roy. Soc. Edinburgh 122, 341–352 (1992) 9.J.I. Díaz, J. Hernández and J.M. Rakotoson. On very weak positive solutions to some singular second order semilinear elliptic problems. In preparation. 10.Díaz J.I, Morel J.M, Oswald L.: An elliptic equation with singular nonlinearity. Comm. PDEs 12, 333–1344 (1987) 11.Díaz J.I., Rakotoson J.M.: On the differentiability of very weak solutions with righthand side data integrable with respect to the distance to the boundary. J. Funct. Anal. 357, 807–831 (2009) 12.Díaz J.I, Rakotoson J.M.: On very weak solutions of semilinear elliptic equations with right hand side data integrable with respect to the distance to the boundary. Discrete and Continuum Dynamical Systems 27, 1037–1058 (2010) 13.Ghergu M.: Lane-Emden systems with negative exponents. J. Functional Analysis 258, 3295–3318 (2010) 14.Gomes S.N.: On a singular nonlinear elliptic problem. SIAM J. Math. Anal. 17, 1259–1269 (1986) 15.Gui C, Hua Lin F.: Regularity of an elliptic problem with singular nonlinearity. Proc. Roy. Soc. Edinburgh 123, 1021–1029 (1993) 16.J. Hernández and F. Mancebo. Singular elliptic and parabolic equations. In Handbook of Differential equations (ed. M. Chipot and P. Quittner), vol. 3. Elsevier, 2006, 317-400. 17.Hernández J, Mancebo F, Vega J.M.: On the linearization of some singular, nonlinear elliptic problems and applications. Annls. Inst. H. Poincaré, Analyse non Linéaire 19, 777–813 (2002) 18.Hernández J, Mancebo F, Vega J.M.: Positive solutions for singular nonlinear elliptic equations. Proc. Roy. Soc. Edinburgh 137, 41–62 (2007) 19.Lazer A.C, McKenna P.J.: On a singular nonlinear elliptic boundary value problem. Proc. Amer. Math. Soc. 111, 721–730 (1991) 20.Mâagli H, Zbiri M.: Existence and estimates of solutions for singular nonlinear elliptic problems. J. Math. Anal. Appl. 263, 522–542 (2001) 21.Mâagli H, Zbiri M.: On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of R n . Positivity 9, 667–686 (2005) 22.Stuart C.A.: Existence and approximation of solutions of nonlinear elliptic equations. Math. Z. 147, 53–63 (1976) 23.Zhang Z, Cheng J.: Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems. Nonlinear Anal. 57, 473–484 (2004)
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Diaz-Vol.79 Heft 1[1].pdf
Size:
260.29 KB
Format:
Adobe Portable Document Format

Collections