Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Genome sequence alignment-design space exploration for optimal performance and energy architectures

dc.contributor.authorQureshi, Yasir Mahmood
dc.contributor.authorHerruzo, José M.
dc.contributor.authorZapater, Marina
dc.contributor.authorOlcoz Herrero, Katzalin
dc.contributor.authorGonzález Navarro, Sonia
dc.contributor.authorPlata, Óscar
dc.contributor.authorAtienza, David
dc.date.accessioned2023-06-16T14:18:00Z
dc.date.available2023-06-16T14:18:00Z
dc.date.issued2021-12-01
dc.description©2021 IEEE This work was supported in part by the ERC Consolidator Grant COMPUSAPIEN (GA No. 725657), the EC H2020 WiPLASH (GA No. 863337), the EC H2020 RECIPE (GA No. 801137), the EU FEDER and the Spanish MINECO (GA No. RTI2018-093684-B-I00), the Spanish CM (S2018/TCS-4423), Spanish MINECO TIN2016-80920-R, JA2012 P12-TIC-1470 and UMA18-FEDERJA-197 projects.
dc.description.abstractNext generation workloads, such as genome sequencing, have an astounding impact in the healthcare sector. Sequence alignment, the first step in genome sequencing, has experienced recent breakthroughs, which resulted in next generation sequencing (NGS). As NGS applications are memory bounded with random memory access patterns, we propose the use of high bandwidth memories like 3D stacked HBM2, instead of traditional DRAMs like DDR4, along with energy efficient compute cores to improve both performance and energy efficiency. Three state-of-the-art NGS applications, Bowtie2, BWA-MEM, and HISAT2 are used as case studies to explore and optimize NGS computing architectures. Then, using the gem5-X architectural simulator, we obtain an overall 68 percent performance improvement and 71 percent energy savings using HBM2 instead of DDR4. Furthermore, we propose an architecture based on ARMv8 cores and demonstrate that 16 ARMv8 64-bit OoO cores with HBM2 outperforms 32-cores of Intel Xeon Phi Knights Landing (KNL) processor with 3D stacked memory. Moreover, we show that by using frequency scaling we can achieve up to 59 percent and 61 percent energy savings for ARM in-order and OoO cores, respectively. Lastly, we show that many ARMv8 in-order cores at 1.5GHz match the performance of fewer OoO cores at 2GHz, while attaining 4.5x energy savings.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN) / FEDER
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipJunta de Andalucía
dc.description.sponsorshipUniversidad de Málaga
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/69204
dc.identifier.doi10.1109/TC.2020.3041402
dc.identifier.issn0018-9340
dc.identifier.officialurlhttp://dx.doi.org/10.1109/TC.2020.3041402
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4580
dc.issue.number12
dc.journal.titleIEEE transactions on computers
dc.language.isoeng
dc.page.final2233
dc.page.initial2218
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.projectID(COMPUSAPIEN (725657); WiPLASH (863337); RECIPE (801137))
dc.relation.projectIDRTI2018-093684-B-I00
dc.relation.projectIDTIN2016-80920-R
dc.relation.projectIDCABAHLA-CM (S2018/TCS-4423)
dc.relation.projectIDJA2012 P12-TIC- 1470
dc.relation.projectIDUMA18-FEDERJA-197
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.keywordRead alignment
dc.subject.keywordSequential analysis
dc.subject.keywordBioinformatics
dc.subject.keywordGenomics
dc.subject.keywordBandwidth
dc.subject.keywordThree-dimensional displays
dc.subject.keywordData centers
dc.subject.keywordField programmable gate arrays
dc.subject.keywordGenome sequencing
dc.subject.keywordsequence alignment
dc.subject.keywordNGS
dc.subject.keywordHPC
dc.subject.keywordHBM2
dc.subject.keywordKNL
dc.subject.keywordarchitecture exploration
dc.subject.keywordmany-core
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleGenome sequence alignment-design space exploration for optimal performance and energy architectures
dc.typejournal article
dc.volume.number70
dspace.entity.typePublication
relation.isAuthorOfPublication8cfc18ec-4816-404d-982d-21dc07318c07
relation.isAuthorOfPublication.latestForDiscovery8cfc18ec-4816-404d-982d-21dc07318c07

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
olcoz27 preprint.pdf
Size:
827.98 KB
Format:
Adobe Portable Document Format

Collections