Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Is the Free Electromagnetic Field a Consequence of Maxwell's Equations or a Postulate?

dc.contributor.authorChubykalo, Andrey E.
dc.contributor.authorMúnera Orozco, Héctor Augusto
dc.contributor.authorSmirnov Rueda, Román
dc.date.accessioned2023-06-20T18:52:43Z
dc.date.available2023-06-20T18:52:43Z
dc.date.issued1998
dc.descriptionThe authors are indebted to Profs. V. Dvoeglazov [one of us (H.M.) thanks him for his kind invitation to visit the School of Physics of the Zacatecas University in the context of the CONACyT project No.0270P-E], S. Vlaev, G. Kalberman, O. Guzman, and L.-M. Gaggero for helpful discussion and critical comments. We are especially indebted to the Editor for his choice of the referees: Their valuable remarks helped us improve our reasoning considerably.
dc.description.abstractIt is generally accepted that solutions of so called “free” Maxwell equations for  = 0 (null charge density at every point of the whole space) describe a free electromagnetic field for which flux lines neither begin nor end in a charge). In order to avoid ambiguities and unacceptable approximation which have place in the conventional approach in respect to the free field concept, we explicitly consider three possible types of space regions: (i) “isolated charge-free” region, where a resultant electric field with the flux lines which either begin or end in a charge is zero in every point, for example, inside a hollow conductor of any shape or in a free-charge universe; (ii) “non-isolated charge-free” region, where this electric [see (i)] field is not zero in every point; and (iii) “charge-neutral” region, where point charges exist but their algebraic sum is zero. According to these definitions a strict mathematical interpretation of Maxwell's equations gives following conclusions: (1) In “isolated charge-free” regions electric free field cannot be unconditionally understood neither as a direct consequence of Maxwell's equations nor as a valid approximation: it may be introduced only as a postulate; nevertheless, this case is compatible is the existence of a time-independent background magnetic field. (2) In both “charge-neutral” and “non-isolated charge-free” regions, where the condition  =  function or  = 0 respectively holds, Maxwell's equation for the total electric field have non-zero solutions, as in the conventional approach. However, these solution cannot be strictly identified with the electric free field. This analysis gives rise to the reconsideration of the free-electromagnetic field concept and leads to the simplest implications in respect to charge-neutral universe.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCONACyT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23536
dc.identifier.issn0894-9875
dc.identifier.officialurlhttp://www.ingentaconnect.com/content/klu/fopl/1998/00000011/00000006/00414394?crawler=true#aff_3
dc.identifier.relatedurlhttp://www.ingentaconnect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58838
dc.issue.number6
dc.journal.titleFoundations of Physics Letters
dc.language.isoeng
dc.page.final584
dc.page.initial573
dc.publisherSpringer
dc.relation.projectID0270P-E
dc.rights.accessRightsrestricted access
dc.subject.cdu537.8
dc.subject.keywordCharge-free region
dc.subject.keywordEmpty space
dc.subject.keywordFree field
dc.subject.keywordMassive photon
dc.subject.ucmElectromagnetismo
dc.subject.unesco2202 Electromagnetismo
dc.titleIs the Free Electromagnetic Field a Consequence of Maxwell's Equations or a Postulate?
dc.typejournal article
dc.volume.number11
dcterms.referencesE. M. Purcell, Electricity and Magnetism, Berkeley Physics Course, 2nd edn. (McGraw-Hill, New York, 1985), Vol. 2. L. D. Landau and E. M. Lifshitz, Teoria Polia (Nauka, Moscow, 1973). English translation: Classical Theory of Field (Pergamon, Oxford, 1985). Free Electromagnetic Field 583 A.E.Chubykalo and R.Smirnov-Rueda,Phys.Rev.E 53,5373(1996); see also the Errata, Phys. Rev. E 55, 3793 (1997). A.E. Chubykalo and R.Smirnov-Rueda,Mod. Phys. Lett. A 12(1), 1 (1997). H.A.Munera and O.Guzman,Found. Phys.Lett. 10(1), 31(1997). H.A.Munera and O.Guzman,"An explicit example of a family of non - planar free - space electromagnetic waves containing magnetic scalar potentials," presented at the Vigier Symposium II, Toronto, 1997. I. E. Tamm, Osnovy teorii elektrichestva (The Principles of the Theory of Electricity) (Nauka, Moscow, 1989). V. V. Dvoeglazov, Hadronic J. Suppl. 12, 241 (1997).
dspace.entity.typePublication
relation.isAuthorOfPublication5f81ed85-2b60-4901-8618-011d4bca5d9c
relation.isAuthorOfPublication.latestForDiscovery5f81ed85-2b60-4901-8618-011d4bca5d9c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smirnov09.pdf
Size:
592.35 KB
Format:
Adobe Portable Document Format

Collections