Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A simple model to engineer single-molecule conductance of acenes by chemical disubstitution

dc.contributor.authorFallaque, Joel
dc.contributor.authorRodríguez-González, Sandra
dc.contributor.authorDíaz Blanco, Cristina
dc.contributor.authorMartín, Fernando
dc.date.accessioned2024-01-09T13:01:47Z
dc.date.available2024-01-09T13:01:47Z
dc.date.issued2022
dc.description.abstractUnderstanding and controlling electrical conductivity at the single-molecule level is of fundamental importance for the development of new molecular electronic devices. This ideally requires considering the many different options offered by the molecular structure, the nature of the electrodes, and all possible molecule-electrode anchoring configurations, which is experimentally tedious and theoretically very expensive. Here we present a systematic theoretical study of the conductance of di-amino, di-methylthio and di-(4-methylthio)phenyl acenes, from benzene to pentacene, and for all possible distributions of two identical linkers symmetrically placed on opposite sides of the same ring. We show that, for all investigated compounds, the relative variation of the conductance is well explained by the variations of the HOMO energies as predicted by a simple extended-Hückel approach, i.e., without the need for further input from more elaborate calculations. The model predicts quite nicely that diamino acenes are better conductors than their corresponding dimethylthio analogues, and both much better than the di-(4-methylthio)phenyl counterparts, irrespective of the linkers’ relative positions. It also predicts, for a given pair of linkers, the variations in the conductance resulting from changing the acene size and/or the relative position of the linkers. These variations can be as large as an order of magnitude, and therefore can be used to engineer molecular conductance. Finally, we show that a similar approach should be useful to predict trends in the relative conductance of a large variety of disubstituted acene isomers, including various linkers.
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.identifier.citationFallaque, Joel G., et al. «A Simple Model to Engineer Single-Molecule Conductance of Acenes by Chemical Disubstitution». Nanoscale, vol. 14, n.o 2, 2022, pp. 464-72. https://doi.org/10.1039/D1NR06687K.
dc.identifier.doi10.1039/d1nr06687k
dc.identifier.essn2040-3372
dc.identifier.issn2040-3364
dc.identifier.officialurlhttps://doi.org/10.1039/D1NR06687K
dc.identifier.urihttps://hdl.handle.net/20.500.14352/92036
dc.issue.number2
dc.journal.titleNanoscale
dc.language.isoeng
dc.page.initial464
dc.publisherRoyal society of chemistry
dc.relation.projectIDPID2019- 106732GB-I00
dc.relation.projectIDSEV-2016-0686
dc.relation.projectIDCEX2018-000805- M
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu544
dc.subject.keywordSingle-molecule conductance
dc.subject.keywordAcenes
dc.subject.ucmQuímica física (Química)
dc.subject.unesco2307 Química Física
dc.titleA simple model to engineer single-molecule conductance of acenes by chemical disubstitution
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublication340a9e67-3487-41f5-a6e1-fbd2be739b26
relation.isAuthorOfPublication.latestForDiscovery340a9e67-3487-41f5-a6e1-fbd2be739b26

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Single-molecule_conductance_of_acenes.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format

Collections