Intravenous Lidocaine Decreases Tumor Necrosis Factor Alpha Expression Both Locally and Systemically in Pigs Undergoing Lung Resection Surgery

dc.contributor.authorGarutti Martínez, Ignacio
dc.contributor.authorRancán, Lisa
dc.contributor.authorSimón Adiego, Carlos María
dc.contributor.authorLópez Gil, María Teresa
dc.contributor.authorCusati, Gabriel
dc.contributor.authorSanchez-Pedrosa, Guillermo
dc.contributor.authorMoraga, Francisco
dc.contributor.authorOlmedilla, Luis
dc.contributor.authorVara Ameigeiras, Elena María
dc.date.accessioned2024-01-15T16:43:51Z
dc.date.available2024-01-15T16:43:51Z
dc.date.issued2014
dc.description.abstractBackground: Lung resection surgery is associated with an inflammatory reaction. The use of 1-lung ventilation (OLV) seems to increase the likelihood of this reaction. Different prophylactic and therapeutic measures have been investigated to prevent lung injury secondary to OLV. Lidocaine, a commonly used local anesthetic drug, has antiinflammatory activity. Our main goal in this study was to investigate the effect of IV lidocaine on tumor necrosis factor α (TNF-α) lung expression during lung resection surgery with OLV. Methods: Eighteen pigs underwent left caudal lobectomy. The animals were divided into 3 groups: control, lidocaine, and sham. All animals received general anesthesia. In addition, animals in the lidocaine group received a continuous IV infusion of lidocaine during surgery (1.5 mg/kg/h). Animals in the sham group only underwent thoracotomy. Samples of bronchoalveolar lavage (BAL) fluid and plasma were collected before initiation of OLV, at the end of OLV, at the end of surgery, and 24 hours after surgery. Lung biopsy specimens were collected from the left caudal lobe (baseline) before surgery and from the mediastinal lobe and the left cranial lobe 24 hours after surgery. Samples were flash-frozen and stored to measure levels of the following inflammatory markers: interleukin (IL) 1β, IL-2, IL-10, TNF-α, nuclear factor κB, monocyte chemoattractant protein-1, inducible nitric oxide synthase, and endothelial nitric oxide synthase. Markers of apoptosis (caspase 3, caspase 9, Bad, Bax, and Bcl-2) were also measured. In addition, levels of metalloproteinases and nitric oxide metabolites were determined in BAL fluid and in plasma samples. A nonparametric test was used to examine statistical significance. Results: OLV caused lung damage with increased TNF-α expression in BAL, plasma, and lung samples. Other inflammatory (IL-1β, nuclear factor κB, monocyte chemoattractant protein-1) and apoptosis (caspase 3, caspase 9, and BAX) markers were also increased. With the use of IV lidocaine there was a significant decrease in the levels of TNF-α in the same samples compared with the control group. Lidocaine administration also reduced the inflammatory and apoptotic changes observed in the control group. Hemodynamic values, blood gas values, and airway pressure were similar in all groups. Conclusions: Our results suggest that lidocaine can prevent OLV-induced lung injury through reduced expression of proinflammatory cytokines and lung apoptosis. Administration of lidocaine may help to prevent lung injury during lung surgery with OLV.en
dc.description.departmentDepto. de Bioquímica y Biología Molecular
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipInstituto de Salud Carlos III
dc.description.sponsorshipFundación Mutua Madrileña
dc.description.sponsorshipFundación Rodríguez Pascual
dc.description.sponsorshipSociedad Madrileña de Neumología y Cirugía Torácica
dc.description.statuspub
dc.identifier.citationGarutti I, Rancan L, Simón C, Cusati G, Sanchez-Pedrosa G, Moraga F, Olmedilla L, Lopez-Gil MT, Vara E. Intravenous lidocaine decreases tumor necrosis factor alpha expression both locally and systemically in pigs undergoing lung resection surgery. Anesth Analg. 2014 Oct;119(4):815-828. doi: 10.1213/ANE.0000000000000360. PMID: 25036372.
dc.identifier.doi10.1213/ane.0000000000000360
dc.identifier.issn0003-2999
dc.identifier.officialurlhttps://doi.org/10.1213/ane.0000000000000360
dc.identifier.pmid25036372
dc.identifier.relatedurlhttps://pubmed.ncbi.nlm.nih.gov/25036372/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/93185
dc.issue.number4
dc.journal.titleAnesthesia & Analgesia
dc.language.isoeng
dc.page.final828
dc.page.initial815
dc.publisherLippincott, Williams & Wilkins
dc.relation.projectIDPI10/00986
dc.relation.projectIDPI10/0900
dc.relation.projectIDAP101072012
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu61
dc.subject.jel617-089.5
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco2403 Bioquímica
dc.titleIntravenous Lidocaine Decreases Tumor Necrosis Factor Alpha Expression Both Locally and Systemically in Pigs Undergoing Lung Resection Surgeryen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number119
dcterms.references1. Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg 2006;29:591–5 2. Takenaka K, Ogawa E, Wada H, Hirata T. Systemic inflammatory response syndrome and surgical stress in thoracic surgery. J Crit Care 2006;21:48–53 3. Sakamoto K, Arakawa H, Mita S, Ishiko T, Ikei S, Egami H, Hisano S, Ogawa M. Elevation of circulating interleukin 6 after surgery: factors influencing the serum level. Cytokine 1994;6:181–6 4. Gothard J. Lung injury after thoracic surgery and one-lung ventilation. Curr Opin Anaesthesiol 2006;19:5–10 5. Hollmann MW, Durieux ME. Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology 2000;93:858–75 6. McCarthy GC, Megalla SA, Habib AS. Impact of intravenous lidocaine infusion on postoperative analgesia and recovery from surgery: a systematic review of randomized controlled trials. Drugs 2010;70:1149–63 7. Azuma H, Ikebuchi K, Yamaguchi M, Murahashi H, Mogi Y, Sato N, Fujihara M, Hirayama F, Ikeda H. Comparison of sensitivity to ultraviolet B irradiation between human lymphocytes and hematopoietic stem cells. Blood 2000;96:2632–4 8. Picardi S, Cartellieri S, Groves D, Hahnenkamp K, Hahnenekamp K, Gerner P, Durieux ME, Stevens MF, Lirk P, Hollmann MW. Local anesthetic-induced inhibition of human neutrophil priming: the influence of structure, lipophilicity, and charge. Reg Anesth Pain Med 2013;38:9–15 9. Gibbs DF, Shanley TP, Warner RL, Murphy HS, Varani J, Johnson KJ. Role of matrix metalloproteinases in models of macrophage-dependent acute lung injury. Evidence for alveolar macrophage as source of proteinases. Am J Respir Cell Mol Biol 1999;20:1145–54 10. de Klaver MJ, Buckingham MG, Rich GF. Lidocaine attenuates cytokine-induced cell injury in endothelial and vascular smooth muscle cells. Anesth Analg 2003;97:465–70 11. Lan W, Harmon DC, Wang JH, Shorten GD, Redmond PH. Activated endothelial interleukin-1beta, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine. Anesth Analg 2005;100:409–12 12. Martin TR, Nakamura M, Matute-Bello G. The role of apoptosis in acute lung injury. Crit Care Med 2003;31:S184–8 13. Neff TA, Guo RF, Neff SB, Sarma JV, Speyer CL, Gao H, Bernacki KD, Huber-Lang M, McGuire S, Hoesel LM, Riedemann NC, Beck-Schimmer B, Zetoune FS, Ward PA. Relationship of acute lung inflammatory injury to Fas/FasL system. Am J Pathol 2005;166:685–94 14. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156–9 15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8 16. Das KC, Misra HP. Prevention of reperfusion lung injury by lidocaine in isolated rat lung ventilated with higher oxygen levels. J Postgrad Med 2003;49:17–20 17. Schmid RA, Yamashita M, Ando K, Tanaka Y, Cooper JD, Patterson GA. Lidocaine reduces reperfusion injury and neutrophil migration in canine lung allografts. Ann Thorac Surg 1996;61:949–55 18. Hollmann MW, Gross A, Jelacin N, Durieux ME. Local anesthetic effects on priming and activation of human neutrophils. Anesthesiology 2001;95:113–22 19. Zingg U, Forberger J, Frey DM, Esterman AJ, Oertli D, BeckSchimmer B, Zollinger A. Inflammatory response in ventilated left and collapsed right lungs, serum and pleural fluid, in transthoracic esophagectomy for cancer. Eur Cytokine Netw 2010;21:50–7 20. Tsai JA, Lund M, Lundell L, Nilsson-Ekdahl K. One-lung ventilation during thoracoabdominal esophagectomy elicits complement activation. J Surg Res 2009;152:331–7 21. Wright JG, Christman JW. The role of nuclear factor kappa B in the pathogenesis of pulmonary diseases: implications for therapy. Am J Respir Med 2003;2:211–9 22. Tunceroglu H, Shah A, Porhomayon J, Nader ND. Biomarkers of lung injury in critical care medicine: past, present, and future. Immunol Invest 2013;42:247–61 23. Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010;298:L715–31 24. Apostolakis E, Filos KS, Koletsis E, Dougenis D. Lung dysfunction following cardiopulmonary bypass. J Card Surg 2010;25:47–55 25. Casanova J, Garutti I, Simon C, Giraldez A, Martin B, Gonzalez G, Azcarate L, Garcia C, Vara E. The effects of anesthetic preconditioning with sevoflurane in an experimental lung autotransplant model in pigs. Anesth Analg 2011;113:742–8 26. Hollmann MW, Herroeder S, Kurz KS, Hoenemann CW, Struemper D, Hahnenkamp K, Durieux ME. Time-dependent inhibition of G protein-coupled receptor signaling by local anesthetics. Anesthesiology 2004;100:852–60 27. Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 2007;82:1375–81 28. Albaiceta GM, Gutiérrez-Fernández A, Parra D, Astudillo A, García-Prieto E, Taboada F, Fueyo A. Lack of matrix metalloproteinase-9 worsens ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2008;294:L535–43 29. Haseneen NA, Vaday GG, Zucker S, Foda HD. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol 2003;284:L541–7 30. Fligiel SE, Standiford T, Fligiel HM, Tashkin D, Strieter RM, Warner RL, Johnson KJ, Varani J. Matrix metalloproteinases and matrix metalloproteinase inhibitors in acute lung injury. Hum Pathol 2006;37:422–30 31. González-López A, García-Prieto E, Batalla-Solís E, AmadoRodríguez L, Avello N, Blanch L, Albaiceta GM. Lung strain and biological response in mechanically ventilated patients. Intensive Care Med 2012;38:240–7 32. Kim JH, Suk MH, Yoon DW, Lee SH, Hur GY, Jung KH, Jeong HC, Lee SY, Lee SY, Suh IB, Shin C, Shim JJ, In KH, Yoo SH, Kang KH. Inhibition of matrix metalloproteinase-9 prevents neutrophilic inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2006;291:L580–7 33. Sedoris KC, Ovechkin AV, Gozal E, Roberts AM. Differential effects of nitric oxide synthesis on pulmonary vascular function during lung ischemia-reperfusion injury. Arch Physiol Biochem 2009;115:34–46 34. Razavi HM, Wang LF, Weicker S, Rohan M, Law C, McCormack DG, Mehta S. Pulmonary neutrophil infiltration in murine sepsis: role of inducible nitric oxide synthase. Am J Respir Crit Care Med 2004;170:227–33 35. Ding R, Han J, Tian Y, Guo R, Ma X. Sphingosine-1-phosphate attenuates lung injury induced by intestinal ischemia/ reperfusion in mice: role of inducible nitric-oxide synthase. Inflammation 2012;35:158–66 36. Huang YH, Tsai PS, Kai YF, Yang CH, Huang CJ. Lidocaine inhibition of inducible nitric oxide synthase and cationic amino acid transporter-2 transcription in activated murine macrophages may involve voltage-sensitive Na+ channel. Anesth Analg 2006;102:1739–44 37. Shiga M, Nishina K, Mikawa K, Obara H. The effects of lidocaine on nitric oxide production from an activated murine macrophage cell line. Anesth Analg 2001;92:128–33 38. Matute-Bello G, Martin TR. Science review: apoptosis in acute lung injury. Crit Care 2003;7:355–8 39. Yuluğ E, Tekinbas C, Ulusoy H, Alver A, Yenilmez E, Aydin S, Cekiç B, Topbas M, Imamoğlu M, Arvas H. The effects of oxidative stress on the liver and ileum in rats caused by one-lung ventilation. J Surg Res 2007;139:253–60 40. Vion AC, Birukova AA, Boulanger CM, Birukov KG. Mechanical forces stimulate endothelial microparticle generation via caspase-dependent apoptosis-independent mechanism. Pulm Circ 2013;3:95–9 41. Galani V, Tatsaki E, Bai M, Kitsoulis P, Lekka M, Nakos G, Kanavaros P. The role of apoptosis in the pathophysiology of acute respiratory distress syndrome (ARDS): an up-to-date cellspecific review. Pathol Res Pract 2010;206:145–50 42. Kawasaki C, Kawasaki T, Ogata M, Sata T, Chaudry IH. Lidocaine enhances apoptosis and suppresses mitochondrial functions of human neutrophil in vitro. J Trauma 2010;68:401–8 43. Lei B, Popp S, Capuano-Waters C, Cottrell JE, Kass IS. Lidocaine attenuates apoptosis in the ischemic penumbra and reduces infarct size after transient focal cerebral ischemia in rats. Neuroscience 2004;125:691–701 44. Kaba A, Laurent SR, Detroz BJ, Sessler DI, Durieux ME, Lamy ML, Joris JL. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology 2007;106:11–8 45. Lirk P, Berger R, Hollmann MW, Fiegl H. Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br J Anaesth 2012;109:200–7en
dspace.entity.typePublication
relation.isAuthorOfPublicationeb045373-6f75-435f-8a18-cad113241334
relation.isAuthorOfPublication412d039f-5b44-405f-800d-ff0afb67ccd0
relation.isAuthorOfPublication07b40d24-387c-4774-af7d-76195c9f3242
relation.isAuthorOfPublication3abd793d-539e-422c-9fcf-2207cb087723
relation.isAuthorOfPublication930cde02-596a-4969-9a07-ea88da7c5aa0
relation.isAuthorOfPublication.latestForDiscoveryeb045373-6f75-435f-8a18-cad113241334
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
intravenous_lidocaine_decreases_tumor_necrosis.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Collections