Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Two questions on Heegaard diagrams of S3.

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T17:03:39Z
dc.date.available2023-06-20T17:03:39Z
dc.date.issued1988-02
dc.description.abstractAn important open question about 3-manifolds is whether or not there exists an algorithm for recognizing S3. The author poses two questions about Heegaard diagrams of S3, appropriate answers to either of which would give such an algorithm. If a Heegaard diagram contains either a wave or a cancelling pair, then one can find an equivalent diagram of smaller complexity (in the latter case, of smaller genus). Every nontrivial genus-2 diagram of S3 contains a wave [T. Homma, M. Ochiai and M. Takahashi Osaka J. Math 17 (1980), no. 3, 625–648; MR0591141 (82i:57013)], but this is false for higher genera. The author's first question is whether there are any Heegaard diagrams of S3 without waves and without cancelling pairs. {Reviewer's remark: An example of such a diagram is contained in an article of Ochiai [ibid. 22 (1985), no. 4, 871–873; MR0815455 (87a:57020)].} Given a Heegaard diagram, there is a reduction procedure which produces a so-called pseudominimal diagram. W. Haken [in Topology of manifolds (Athens, Ga., 1969), 140–152, Markham, Chicago, Ill., 1970; MR0273624 (42 #8501)] has suggested that perhaps the only pseudominimal diagrams of S3 are the trivial ones; no counterexamples are known. The author suggests a further reduction step which might be applied to a pseudominimal diagram, yielding several partial diagrams. If any of these has a cancelling pair, then the genus of the original diagram can be reduced. An example is given to show that, in general, for manifolds different from S3, even this enhanced procedure does not always detect the reducibility of a Heegaard splitting. The author's second question, however, is whether it does for splittings of S3. Thus the author is suggesting a possible algorithm for recognizing S3 which allows for the existence of nontrivial pseudominimal diagrams of S3.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComité Conjunto Hispano-Norteamericano
dc.description.sponsorshipNSF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17093
dc.identifier.doi10.2307/2045899
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.ams.org/journals/proc/1988-102-02/S0002-9939-1988-0921010-6/S0002-9939-1988-0921010-6.pdf
dc.identifier.relatedurlhttp://www.ams.org/publications/journals/journalsframework/proc
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57705
dc.issue.number2
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final425
dc.page.initial421
dc.publisherAmerican Mathematical Society
dc.relation.projectID8120790
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.323
dc.subject.keywordHeegaard diagrams of S 3
dc.subject.keywordcut points
dc.subject.keywordcancelling-pairs
dc.subject.keywordrecognition of S 3
dc.subject.ucmTopología
dc.subject.ucmGeometría
dc.subject.unesco1210 Topología
dc.subject.unesco1204 Geometría
dc.titleTwo questions on Heegaard diagrams of S3.
dc.typejournal article
dc.volume.number102
dcterms.referencesJ. S. Birman and J. M. Montesinos, On minimal Heegaard splittings, Michigan Math. J. 27 (1980), 29-57. W. Haken, Various aspects of the three-dimensional Poincaré problem, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 140-152. W. Haken, Private conversation, 24-VII-80. T. Homma, M. Ochiai and M. Takahashi, An algorithm for recognizing S3 in 3-manifolds with Heegaard splittings of genus two, Osaka J. Math. 17 (1980), 625-648 T. Kaneto, A note on an example of Birman-Montesinos, Proc. Amer. Math. Soc. 83 (1981), 425-426. T. Kaneto, On genus 2 Heegaard diagrams for the 3-sphere, Trans. Amer. Math. Soc. 276 (1983), 583-597. O. Morikawa, A counterexample to a conjecture of Whitehead, Math. Sem. Notes Kobe Univ. 8 (1980), 295-299. J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), 88-111. O. Ya. Viro and V. L. Kobel'skii, The Volodin-Kuznetsov-Fomenko conjecture on Heegaard diagrams is false, Uspekhi Mat. Nauk 32 (1977), 175-176. F. Waldhausen, Some problems on 3-manifolds, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1977. F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968), 195-203. J. H. C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math. (2) 37 (1936), 782-800. J. H. C. Whitehead, On certain sets of elements in a free group, London Math. Soc. 41 (1936), 48-56. I. A. Volodin, V. E. Kuznetsov and A. T. Fomenko, The problem of discriminating algorithmically the standard three-dimensional sphere, Russian Math. Survey 29 (1974), 71-172. H. Zieschang, On simple systems of paths on complete pretzels, Amer. Math. Soc. Transl. 92 (1970), 127-137. R. P. Osborne, Heegaard diagrams of lens spaces, Proc. Amer. Math. Soc. 84 (1982), 412-414.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos03.pdf
Size:
438.48 KB
Format:
Adobe Portable Document Format

Collections