Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Mathematical and numerical analysis of a nonlinear diffusive climate energy balance model

Loading...
Thumbnail Image

Full text at PDC

Publication date

2009

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science LTD
Citations
Google Scholar

Citation

Abstract

The purpose of this paper is to carry out the mathematical and numerical analysis of a two-dimensional nonlinear parabolic problem on a compact Riemannian manifold without boundary, which arises in the energy balance for the averaged surface temperature. We use a possibly quasi-linear diffusion operator suggested by P. H. Stone in 1972. The modelling of the Budyko discontinuous coalbedo is formulated in terms of a bounded maximal monotone graph of R(2). The existence of global solutions is proved by applying a fixed point argument. Since the uniqueness of solutions may fail for the case of discontinuous coalbedo, we introduce the notion of non-degenerate solutions and show that the problem has at most one solution in this class of functions. The numerical analysis is carried out for the special case of a spherical Earth and uses quasi-uniform spherical triangles as finite elements. We study the existence, uniqueness and stability of the approximate solutions. We also show results of some long-term numerical experiments.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections