Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An expected compliance model based on topology optimization for designing structures submitted to random loads

dc.contributor.authorCarrasco, Miguel
dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorLecaros, Rodrigo
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2023-06-20T03:53:23Z
dc.date.available2023-06-20T03:53:23Z
dc.date.issued2012
dc.description.abstractIn this paper, we focus in developing a stochastic model for topology optimization. The principal objective of such a model is to find robust structures for a given main load having a stochastic behavior. In the first part, we present the expected compliance formulation and some results in topology optimization. Then, in order to illustrate the interest of our approach, we consider a preliminary 3D cantilever benchmark experiment and compare the obtained results with the one given by a single load approach.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Educación y Ciencia (España)
dc.description.sponsorshipUniversidad de los Andes
dc.description.sponsorshipFONDECYT
dc.description.sponsorshipUCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30689
dc.identifier.issn1848-9605
dc.identifier.officialurlhttp://dea.ele-math.com/04-07/An-expected-compliance-model-based-on-topology-optimization-for-designing-structures-submitted-to-random-loads
dc.identifier.relatedurlhttp://ele-math.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44621
dc.issue.number1
dc.journal.titleDifferential equations & applications
dc.language.isoeng
dc.page.final120
dc.page.initial111
dc.publisherElement d.o.o
dc.relation.projectIDQUIMAPRESS (S2009/PPQ- 1551)
dc.relation.projectIDMTM2008-04621/MTM
dc.relation.projectIDGrant 11090328
dc.relation.projectIDResearch Group MOMAT (Ref. 910480)
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.cdu519.242.5
dc.subject.keywordtopology optimization
dc.subject.keywordstructural optimization
dc.subject.keywordexpected compliance model
dc.subject.keywordfinite element method.
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1207 Investigación Operativa
dc.titleAn expected compliance model based on topology optimization for designing structures submitted to random loads
dc.typejournal article
dc.volume.number4
dcterms.references[1] W. ACHTZIGER, Topology optimization of discrete structures: an introduction in view of computational and nonsmooth aspects, In Topology optimization in structural mechanics, volume 374 of CISM Courses and Lectures, pages 57–100, Springer, Vienna, 1997. [2] W. ACHTZIGER, M. BENDSØE, A. BEN-TAL, AND J. ZOWE, Equivalent displacement based formulations for maximum strength truss topology design, Impact Comput. Sci. Engrg., 4, 4 (1992), 315–345. [3] F. ALVAREZ AND M. CARRASCO, Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim., 29, 6 (2005), 470–476. [4] M. P. BENDSØE AND O. SIGMUND, Topology optimization. Theory, methods and applications, Springer-Verlag, Berlin, 2003. [5] A. BEN-TAL AND A. NEMIROVSKI, Robust truss topology design via semidefinite programming, SIAM J. Optim., 7, 4 (1997), 991–1016. [6] A. BEN-TAL AND M. ZIBULEVSKY, Penalty/barrier multiplier methods for convex programming problems, SIAM J. Optim., 7 2 (1997), 347–366. [7] M. CARRASCO, B. IVORRA AND A.M. RAMOS, A variance-expected compliance model for structural optimization, Journal of Optimization Theory and Applications, accepted, 2011. [8] P. CIARLET, Mathematical Elasticity, Vol. I, Three Dimensional Elasticity, North-Holland, Amsterdam, 1988. [9] S. CONTI, H. HELD, M. PACH, M. RUMPF AND R. SCHULTZ, Shape optimization under uncertainty, a stochastic programming perspective, SIAM Journal on Optimization, 19, 4 (2008), 1610–1632. [10] B. IVORRA, B. MOHAMMADI, AND A.M. RAMOS, Optimization strategies in credit portfolio management, Journal Of Global Optimization, 43 2 (2009), 415–427. [11] B. IVORRA, A. M. RAMOS, AND B. MOHAMMADI, Semideterministic global optimization method: Application to a control problem of the Burgers equation, Journal of Optimization Theory and Applications, 135, 3 (2007), 549–561. [12] L. D. LANDAU, E. M. LIFSHITZ, Theory of Elasticity, Oxford, England: Butterworth Heinemann, 1986. [13] O. SIGMUND, A 99 line topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, 21, 2 (2001), 120–127.
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ivorra49.pdf
Size:
201.08 KB
Format:
Adobe Portable Document Format

Collections