An expected compliance model based on topology optimization for designing structures submitted to random loads
dc.contributor.author | Carrasco, Miguel | |
dc.contributor.author | Ivorra, Benjamín Pierre Paul | |
dc.contributor.author | Lecaros, Rodrigo | |
dc.contributor.author | Ramos Del Olmo, Ángel Manuel | |
dc.date.accessioned | 2023-06-20T03:53:23Z | |
dc.date.available | 2023-06-20T03:53:23Z | |
dc.date.issued | 2012 | |
dc.description.abstract | In this paper, we focus in developing a stochastic model for topology optimization. The principal objective of such a model is to find robust structures for a given main load having a stochastic behavior. In the first part, we present the expected compliance formulation and some results in topology optimization. Then, in order to illustrate the interest of our approach, we consider a preliminary 3D cantilever benchmark experiment and compare the obtained results with the one given by a single load approach. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Ministerio de Educación y Ciencia (España) | |
dc.description.sponsorship | Universidad de los Andes | |
dc.description.sponsorship | FONDECYT | |
dc.description.sponsorship | UCM | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30689 | |
dc.identifier.issn | 1848-9605 | |
dc.identifier.officialurl | http://dea.ele-math.com/04-07/An-expected-compliance-model-based-on-topology-optimization-for-designing-structures-submitted-to-random-loads | |
dc.identifier.relatedurl | http://ele-math.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44621 | |
dc.issue.number | 1 | |
dc.journal.title | Differential equations & applications | |
dc.language.iso | eng | |
dc.page.final | 120 | |
dc.page.initial | 111 | |
dc.publisher | Element d.o.o | |
dc.relation.projectID | QUIMAPRESS (S2009/PPQ- 1551) | |
dc.relation.projectID | MTM2008-04621/MTM | |
dc.relation.projectID | Grant 11090328 | |
dc.relation.projectID | Research Group MOMAT (Ref. 910480) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.cdu | 519.242.5 | |
dc.subject.keyword | topology optimization | |
dc.subject.keyword | structural optimization | |
dc.subject.keyword | expected compliance model | |
dc.subject.keyword | finite element method. | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.ucm | Investigación operativa (Matemáticas) | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.title | An expected compliance model based on topology optimization for designing structures submitted to random loads | |
dc.type | journal article | |
dc.volume.number | 4 | |
dcterms.references | [1] W. ACHTZIGER, Topology optimization of discrete structures: an introduction in view of computational and nonsmooth aspects, In Topology optimization in structural mechanics, volume 374 of CISM Courses and Lectures, pages 57–100, Springer, Vienna, 1997. [2] W. ACHTZIGER, M. BENDSØE, A. BEN-TAL, AND J. ZOWE, Equivalent displacement based formulations for maximum strength truss topology design, Impact Comput. Sci. Engrg., 4, 4 (1992), 315–345. [3] F. ALVAREZ AND M. CARRASCO, Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim., 29, 6 (2005), 470–476. [4] M. P. BENDSØE AND O. SIGMUND, Topology optimization. Theory, methods and applications, Springer-Verlag, Berlin, 2003. [5] A. BEN-TAL AND A. NEMIROVSKI, Robust truss topology design via semidefinite programming, SIAM J. Optim., 7, 4 (1997), 991–1016. [6] A. BEN-TAL AND M. ZIBULEVSKY, Penalty/barrier multiplier methods for convex programming problems, SIAM J. Optim., 7 2 (1997), 347–366. [7] M. CARRASCO, B. IVORRA AND A.M. RAMOS, A variance-expected compliance model for structural optimization, Journal of Optimization Theory and Applications, accepted, 2011. [8] P. CIARLET, Mathematical Elasticity, Vol. I, Three Dimensional Elasticity, North-Holland, Amsterdam, 1988. [9] S. CONTI, H. HELD, M. PACH, M. RUMPF AND R. SCHULTZ, Shape optimization under uncertainty, a stochastic programming perspective, SIAM Journal on Optimization, 19, 4 (2008), 1610–1632. [10] B. IVORRA, B. MOHAMMADI, AND A.M. RAMOS, Optimization strategies in credit portfolio management, Journal Of Global Optimization, 43 2 (2009), 415–427. [11] B. IVORRA, A. M. RAMOS, AND B. MOHAMMADI, Semideterministic global optimization method: Application to a control problem of the Burgers equation, Journal of Optimization Theory and Applications, 135, 3 (2007), 549–561. [12] L. D. LANDAU, E. M. LIFSHITZ, Theory of Elasticity, Oxford, England: Butterworth Heinemann, 1986. [13] O. SIGMUND, A 99 line topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, 21, 2 (2001), 120–127. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6d5e1204-9b8a-40f4-b149-02d32e0bbed2 | |
relation.isAuthorOfPublication | 581c3cdf-f1ce-41e0-ac1e-c32b110407b1 | |
relation.isAuthorOfPublication.latestForDiscovery | 6d5e1204-9b8a-40f4-b149-02d32e0bbed2 |
Download
Original bundle
1 - 1 of 1