Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New Aggregation Approaches with HSV to Color Edge Detection

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Atlantis Press
Citations
Google Scholar

Citation

Flores-Vidal, P., Gómez, D., Castro, J., Montero, J.: New Aggregation Approaches with HSV to Color Edge Detection. Int J Comput Intell Syst. 15, 78 (2022). https://doi.org/10.1007/s44196-022-00137-x

Abstract

The majority of edge detection algorithms only deal with grayscale images, while their use with color images remains an open problem. This paper explores different approaches to aggregate color information of RGB and HSV images for edge extraction purposes through the usage of the Sobel operator and Canny algorithm. This paper makes use of Berkeley’s image data set, and to evaluate the performance of the different aggregations, the F-measure is computed. Higher potential of aggregations with HSV channels than with RGB channels is found. This article also shows that depending on the type of image used, RGB or HSV, some methods are more appropriate than others.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections