Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lower semifinite topology in hyperspaces

dc.contributor.authorCuchillo Ibáñez, Eduardo
dc.contributor.authorAlonso Morón, Manuel
dc.contributor.authorRomero Ruiz Del Portal, Francisco
dc.date.accessioned2023-06-20T18:41:57Z
dc.date.available2023-06-20T18:41:57Z
dc.date.issued1992
dc.description.abstractIn this paper we use the lower semifinite topology in hyperspaces to obtain examples in topology such as pseudocompact spaces not countably compact, separable spaces not Lindelöf and in a natural way many spaces appear which are T0 but not T1. We also give, in a unified form, many examples of contractible locally contractible spaces, absolute extensor for the class of all topological spaces, absolute retract and many examples of spaces having the fixed point property. Finally we obtain the following characterization of compactness: ``A paracompact Hausdorff space is compact if and only if the hyperspace, with the lower semifinite topology, 2X, has the fixed point property''.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20408
dc.identifier.issn0146-4124
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58344
dc.journal.titleTopology Proceedings
dc.language.isoeng
dc.page.final39
dc.page.initial29
dc.publisherAuburn University
dc.rights.accessRightsrestricted access
dc.subject.cdu515.12
dc.subject.keywordTykhonov space
dc.subject.keywordLower Vietoris topology
dc.subject.keywordFixed point property
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleLower semifinite topology in hyperspacesen
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication95bd8189-3086-4e0f-94f6-06dee8c8f675
relation.isAuthorOfPublication5c796e83-3a3a-466d-821f-de3280112781
relation.isAuthorOfPublication.latestForDiscovery5c796e83-3a3a-466d-821f-de3280112781

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tp17002.pdf
Size:
710.92 KB
Format:
Adobe Portable Document Format

Collections