Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Every closed convex set is the set of minimizers of some C1-smooth convex function

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorFerrera Cuesta, Juan
dc.date.accessioned2023-06-20T16:47:33Z
dc.date.available2023-06-20T16:47:33Z
dc.date.issued2002
dc.description.abstractThe authors show that for every closed convex set C in a separable Banach space there is a nonnegative C1 convex function f such that C = {x: f(x) = 0}. The key is to show this for a closed halfspace. This result has several attractive consequences. For example, it provides an easy proof that every closed convex set is the Hausdorff limit of infinitely smooth convex bodies (Cn := {x: f(x) _ 1/n}) and that every continuous convex function is the Mosco limit of C1 convex functions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12354
dc.identifier.doi10.1090/S0002-9939-02-06695-9
dc.identifier.issn1088-6826
dc.identifier.officialurlhttp://www.ams.org/proc/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57021
dc.issue.number12
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final3692
dc.page.initial3687
dc.publisherAmerica Mathematical Society
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleEvery closed convex set is the set of minimizers of some C1-smooth convex function
dc.typejournal article
dc.volume.number130
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2002every1.pdf
Size:
274.37 KB
Format:
Adobe Portable Document Format

Collections