Every closed convex set is the set of minimizers of some C1-smooth convex function
dc.contributor.author | Azagra Rueda, Daniel | |
dc.contributor.author | Ferrera Cuesta, Juan | |
dc.date.accessioned | 2023-06-20T16:47:33Z | |
dc.date.available | 2023-06-20T16:47:33Z | |
dc.date.issued | 2002 | |
dc.description.abstract | The authors show that for every closed convex set C in a separable Banach space there is a nonnegative C1 convex function f such that C = {x: f(x) = 0}. The key is to show this for a closed halfspace. This result has several attractive consequences. For example, it provides an easy proof that every closed convex set is the Hausdorff limit of infinitely smooth convex bodies (Cn := {x: f(x) _ 1/n}) and that every continuous convex function is the Mosco limit of C1 convex functions. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12354 | |
dc.identifier.doi | 10.1090/S0002-9939-02-06695-9 | |
dc.identifier.issn | 1088-6826 | |
dc.identifier.officialurl | http://www.ams.org/proc/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57021 | |
dc.issue.number | 12 | |
dc.journal.title | Proceedings of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 3692 | |
dc.page.initial | 3687 | |
dc.publisher | America Mathematical Society | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Every closed convex set is the set of minimizers of some C1-smooth convex function | |
dc.type | journal article | |
dc.volume.number | 130 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication | 1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1