Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Mayer-vietoris property of the fixed point index

dc.contributor.authorBarge, Héctor
dc.contributor.authorWójcik, K.
dc.date.accessioned2023-06-17T22:25:42Z
dc.date.available2023-06-17T22:25:42Z
dc.date.issued2017
dc.description.abstractIn this paper we study a Mayer-Vietoris kind of formula for the fixed point index of maps of ENR triplets f : (X;X1,X2) → (X;X1,X2) having compact fixed point set. We prove it under some suitable conditions. For instance when (X;X1,X2) = (En;En+,En −). We use these results to generalize Poincar´e-Bendixson index formula for vector fields to continuos maps having a sectorial decomposition, to study the fixed point index i(f, 0) of orientation preserving homeomorphisms of E2 + and (E3;E3 +,E3 −) and the fixed point index in the invariant subspace.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipFaculty of Mathematics and Computer Science of Jagiellonian University in Krakow
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/47101
dc.identifier.doi10.12775/TMNA.2017.034
dc.identifier.issn1230-3429
dc.identifier.officialurlhttps://projecteuclid.org/euclid.tmna/1506477634
dc.identifier.relatedurlhttps://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18493
dc.issue.number2
dc.journal.titleTopological Methods in Nonlinear Analysis
dc.language.isoeng
dc.page.final667
dc.page.initial643
dc.publisherJuliusz Schauder Center
dc.relation.projectIDMTM2015-63612-P
dc.relation.projectIDFPI grant BES-2013-062675
dc.relation.projectIDEEBB-I-16-11119
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordFixed point index
dc.subject.keywordBrouwer degree
dc.subject.keywordSectorial decomposition
dc.subject.keywordProper pair
dc.subject.keywordIsolated invariant set.
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleMayer-vietoris property of the fixed point index
dc.typejournal article
dc.volume.number50
dcterms.references1. M. Arkowitz , R. F. Brown, The Lefschetz-Hopf theorem and axioms for the Lefschetz number , Fixed Point Theory Appl. 1 (2004), 1–11. 2. C. Bonatti, J. Villadelprat, The index of stable critical points, Topology Appl. 126, (2002), 263-271. 3. M. Bonino, Lefschetz index for orientation reversing planar homeomorphisms, Proc. AMS 130 (2002) (7), 2173-2177. 4. M. Brown, On the fixed point index of iterates of planar homeomorphisms, Proc. AMS 108 (1990) (4), 1109-1114. 5. R. F. Brown, R. E. Greene, H. Schirmer, Fixed points of map extension, in Boju Jiang (Ed.), Topological Fixed Point Theory and Aplications, Lect. Notes in Math. 1411 (1989), pp. 24–45. 6. A. Capietto, B. M. Garay, Saturated invariant sets and the boundary behaviour of differential Systems, J. Math. Anal. Appl. 176, (1993), 166–181. 7. E. N. Dancer, R. Ortega, The index of Lyapunov stable fixed points, J. Dyn. Diff. Eq. 6 (1994), 631–637. 8. A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1–8. 9. A. Dold, Fixed point indices of iterated maps, Invent. Math. 74 (1983), 419–435. 10. F. Dumortier, J. Llibre, J.C. Art´es, Qualitative Theory of Planar Differential Systems, Series: Universitext, Springer-Verlag, Berl´ın, 2006. 11. B. M. Garay, J. Hofbauer, Robust permanence for ecological differential equations, minimax, and discretizations, SIAM. J. Math. Anal. 34 (2003) 1007–1039. 12. G. Graff, P. Nowak-Przygodzki, Fixed point indices of iterations of planar homeomorphisms, Topol. Meth. Nonl. Anal. 22 (2003), 159-166. 13. G. Graff, J. Jezierski, Minimal number of periodic points of smooth boundary-preserving self-maps of simplyconnected manifolds, J. Geom Dedicata (2016) doi:10.1007/s10711-016-0199-4. 14. L. Hernandez-Corbato, F. R. Ruiz del Portal, Fixed point indices of planar continuous maps, Discrete and Cont. Dyn. Sys. 35, (2015), 2979–2995. 15. M. W. Hirsch, Differential Topology, Series: Graduate Texts in Mathematics, vol. 33, Springer-Verlag, NewYork 1994. 16. J. Hofbauer, Saturated equilibria, permanence, and stability for ecological systems, in “Mathematical Ecology, Proc. Trieste, 1986” (L. J. Gross, T. G. Hallman, and S. A. Levin, Eds.), pp. 625–642, World Scientific. 17. M. Izydorek, S. Rybicki, Z. Szafraniec, A note on the Poincar´e-Bendixson index theorem, Kodai Math. J. 19, (1996) (2), 145–156. 18. J. Jezierski, W. Marzantowicz, Homotopy Methods in Topological Fixed and Periodic Points Theory, Series: Topological Fixed Point Theory and Appl., vol. 3, Springer, 2005. 19. B. Jiang, Lectures on Nielsen Fixed Point Theory, Series: Contemporary Mathematics, vol. 14, Amer. Math. Soc., Providence, RI, 1983. 20. N. Khamsemanan, R. F. Brown, C. Lee, S. Dhompongsa, Interior fixed points of unit-sphere-preserving Euclidean maps, Fixed Point Th. Appl., 2012/1/183. 21. N. Khamsemanan, R. F. Brown, C. Lee, S. Dhompongsa, A fixed point theorem for smooth extension maps, Fixed Point Th. Appl. , 2014/1/197. 22. P. Le Calvez, J.-C. Yoccoz, Un th´eoreme d’indice pour les hom´eomorphisms du plan au voisinage d’un point fixe, Ann. Math. 146, (1997), 241–293. 23. J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 218, Springer-Verlag, New York 2003. 24. J.W. Milnor, Topology from the Differentiable Viewpoint, Princeton University Press , 1997. 25. P. Pelikan, E. E. Slaminka, A bound for the fixed point index of an area-preserving homeomorphism of two-manifolds, Ergod. Th. Dyn. Syst. 7 (1987), 463–479. 26. A. Ruiz-Herrera, Permanence of two species and fixed point index, Nonlinear Anal. 74 (2011) 146153. 27. F. R. Ruiz del Portal, Planar isolated and stable fixed points have index = 1, J. Diff. Eq. 199, (2004), 179–188. 28. F. R. Ruiz del Portal, J. M. Salazar, Fixed point index o,f iterations of local homeomorphism of the plane: a Conley index approach, Topology 41 (2002), 1199–1212. 29. F. R. Ruiz del Portal, J. M. Salazar, Indices of the iterates of R 3-homeomorphisms at Lyapunov stable fixed points, I. Diff. Eq. 244 (2008), 1141–1156. 30. R. Srzednicki, Generalized Lefschetz Theorem and Fixed Point Index Formula, Topol. Appl. 81, (1997), 207-224. 31. A. Szymczak, K. W´ojcik, P. Zgliczy´nski, On the discrete Conley index in the invariant subspace, Topol. Appl. 87, (1998), 105–115. 32. E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., 1966. 33. K. W´ojcik, Conley index and permanence in dynamical systems, Top. Meth. Nonl. Anal. 12 (1998), 153–158. 34. K. W´ojcik, An attraction result and an index theorem for a continuous flows on Rn × [0, +∞), Ann. Polon. Math. 65 (1997), 203–211.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Barge1.pdf
Size:
228.31 KB
Format:
Adobe Portable Document Format

Collections