Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

FPGA implementation of a modified FitzHugh-Nagumo neuron-based causal neural network for compact internal representation of dynamic environments

dc.conference.date18-20 Abril 2011
dc.conference.placePrague, Czech Republic
dc.conference.titleSPIE Microtechnologies in Bioelectronics, Biomedical, and Bio-inspired Systems
dc.contributor.authorSalas Paracuellos, Luis
dc.contributor.authorAlba Soto, Luis
dc.contributor.authorVillacorta Atienza, José Antonio
dc.contributor.authorMakarov Slizneva, Valeriy
dc.date.accessioned2024-02-02T17:37:17Z
dc.date.available2024-02-02T17:37:17Z
dc.date.issued2011
dc.descriptionProceedings Volume 8068, Bioelectronics, Biomedical, and Bioinspired Systems V; and Nanotechnology V; 80680Jen
dc.description.abstractAnimals for surviving have developed cognitive abilities allowing them an abstract representation of the environment. This internal representation (IR) may contain a huge amount of information concerning the evolution and interactions of the animal and its surroundings. The temporal information is needed for IRs of dynamic environments and is one of the most subtle points in its implementation as the information needed to generate the IR may eventually increase dramatically. Some recent studies have proposed the compaction of the spatiotemporal information into only space, leading to a stable structure suitable to be the base for complex cognitive processes in what has been called Compact Internal Representation (CIR). The Compact Internal Representation is especially suited to be implemented in autonomous robots as it provides global strategies for the interaction with real environments. This paper describes an FPGA implementation of a Causal Neural Network based on a modified FitzHugh-Nagumo neuron to generate a Compact Internal Representation of dynamic environments for roving robots, developed under the framework of SPARK and SPARK II European project, to avoid dynamic and static obstacles.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationL. Salas-Paracuellos, Luis Alba, Jose A. Villacorta-Atienza, and Valeri A. Makarov "FPGA implementation of a modified FitzHugh-Nagumo neuron based causal neural network for compact internal representation of dynamic environments", Proc. SPIE 8068, Bioelectronics, Biomedical, and Bioinspired Systems V; and Nanotechnology V, 80680J (3 May 2011); https://doi.org/10.1117/12.886911
dc.identifier.doi10.1117/12.886911
dc.identifier.officialurlhttps://doi.org/10.1117/12.886911
dc.identifier.relatedurlhttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/8068/80680J/FPGA-implementation-of-a-modified-FitzHugh-Nagumo-neuron-based-causal/10.1117/12.886911.short?webSyncID=08319ab1-64c2-3435-1639-7deac06ee317&sessionGUID=21948da2-52e1-18ce-0019-c233c1102841&_ga=2.43562912.421216872.1706818439-2096054241.1706818439
dc.identifier.urihttps://hdl.handle.net/20.500.14352/98478
dc.language.isoeng
dc.rights.accessRightsrestricted access
dc.subject.cdu612.8
dc.subject.cdu611.8
dc.subject.keywordFPGA
dc.subject.keywordCIR
dc.subject.keywordCausal neural network
dc.subject.keywordFitzHugh-Nagumo
dc.subject.ucmCiencias
dc.subject.ucmNeurociencias (Biológicas)
dc.subject.unesco24 Ciencias de la Vida
dc.subject.unesco2490 Neurociencias
dc.titleFPGA implementation of a modified FitzHugh-Nagumo neuron-based causal neural network for compact internal representation of dynamic environmentsen
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication21b23d2b-75f8-4803-9370-4e88539b81cc
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscovery21b23d2b-75f8-4803-9370-4e88539b81cc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FPGA_implementation.pdf
Size:
520.89 KB
Format:
Adobe Portable Document Format

Collections