Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Field-Pulse-Induced Annealing of 2D Colloidal Polycrystals

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Citations
Google Scholar

Citation

Abstract

Two-dimensional colloidal crystals are of considerable fundamental and practical importance. However, their quality is often low due to the widespread presence of domain walls and defects. In this work, we explored the annealing process undergone by monolayers of superparamagnetic colloids adsorbed onto fluid interfaces in the presence of magnetic field pulses. These systems present the extraordinary peculiarity that both the extent and the character of interparticle interactions can be adjusted at will by simply varying the strength and orientation of the applied field so that the application of field pulses results in a sudden input of energy. Specifically, we have studied the effect of polycrystal size, pulse duration, slope and frequency on the efficiency of the annealing process and found that (i) this strategy is only effective when the polycrystal consists of less than approximately 10 domains; (ii) that the pulse duration should be of the order of magnitude of the time required for the outer particles to travel one diameter during the heating step; (iii) that the quality of larger polycrystals can be slightly improved by applying tilted pulses. The experimental results were corroborated by Brownian dynamics simulations.

Research Projects

Organizational Units

Journal Issue

Description

Funding: This work has been funded by the Ministry of Science and Innovation (Grants No. PID2019- 105343GB-I00 and PID2019-105195RA-I00) and the project EUR2021-122001. Acknowledgments: We thank Andrés González-Banciella and Alba Camino for initial experiments

UCM subjects

Keywords

Collections