Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Structure of the dielectric tensor in nematic liquid crystals with topological charge

dc.contributor.authorMartínez Matos, Óscar
dc.contributor.authorVaveliuk, Pablo
dc.contributor.authorMoraes, Fernando Jorge Sampaio
dc.contributor.authorFumeron, Sebastien
dc.contributor.authorCalvo Padilla, María Luisa
dc.date.accessioned2023-06-20T03:39:00Z
dc.date.available2023-06-20T03:39:00Z
dc.date.issued2010-06
dc.description© 2010 Optical Society of America. P. V. and F. M. acknowledge financial support from CNPq (Brazilian federal grant agency). The partial financial support of the Spanish Ministry of Innovation and Science, under project TEC2008-04105is acknowledged.
dc.description.abstractA q-plate is a stratified medium composed of a uniaxial nematic liquid crystal with an inhomogeneous orientation of the optical axis possessing a topological charge q, which looks promising as a switching device. This work reports an approach to diagonalizing the dielectric tensor in q-plates, giving a detailed study of nontrivial tensor coordinate transformations. The relationship between the diagonal dielectric tensor and the topological charge of the plate is established. From that, the dielectric tensor for a given q-plate can be explicitly calculated in a convenient frame, and hence the field propagation equations can be derived. These studies establish a theoretical basis that could further deepen the research on these particular structures for nonconventional manipulation of the light.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCNPq (Brazilian federal grant agency)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN), España.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25149
dc.identifier.doi10.1364/JOSAA.27.001466
dc.identifier.issn1084-7529
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.27.001466
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44156
dc.issue.number6
dc.journal.titleJournal of The Optical Society Of America A-Optics Image Science and Vision
dc.language.isoeng
dc.page.final1472
dc.page.initial1466
dc.publisherOptical Society of America
dc.relation.projectIDTEC2008-04105
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordLaser-Beams
dc.subject.keywordPhase
dc.subject.keywordManipulation
dc.subject.keywordPropagation
dc.subject.keywordLight
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleStructure of the dielectric tensor in nematic liquid crystals with topological charge
dc.typejournal article
dc.volume.number27
dcterms.references1. G. F. Calvo and A. Picón, “Spin-induced angular momentum switching”, Opt. Lett. 32, 838–840 (2007). 2. E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Light propagation in a birefringent -plate with topological charge”, Opt. Lett. 34, 1225–1227 (2009). 3. P. Vaveliuk, “Nondiffracting wave properties in radially and azimuthally symmetric optical axis phase plates”, Opt. Lett. 34, 3641–3643 (2009). 4. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-orbital angular momentum conversion in inhomogeneous anisotropic media”, Phys. Rev. Lett. 96, 163905 (2006). 5. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates”, Appl. Phys. Lett. 94, 231124 (2009). 6. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates”, Phys. Rev. Lett. 103, 013601 (2009). 7. J. A. Ferrari, W. Dultz, H. Schmitzer, and E. Frins, “Achromatic wavefront forming with space-variant polarizers: Application to phase singularities and light focusing”, Phys. Rev. A 76, 053815 (2007). 8. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam–Berry phase optical elements”, Opt. Lett. 29, 238–240 (2004). 9. Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variantpolarization manipulation for far-field polarimetry by use of subwavelength dielectric gratings”, Opt. Lett. 30, 2245–2247 (2005). 10. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices”, Opt. Express 14, 4208–4218 (2006). 11. Q. Zhan and J. R. Leger, “Interferometric measurement of the geometric phase in space-variant polarization manipulations”, Opt. Commun. 213, 241–245 (2002). 12. M. J. Stephen and J. P. Straley, “Physics of liquid crystals”, Rev. Mod. Phys. 46, 617–704 (1974). 13. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Univ. Press, 1993). 14. P. Vaveliuk, B. Ruiz, and A. Lencina, “Limits of the paraxial aproximation in laser beams”, Opt. Lett. 32, 927–929 (2007). 15. P. Vaveliuk, G. F. Zebende, M. A. Moret, and B. Ruiz, “Propagating free-space nonparaxial beams”, J. Opt. Soc. Am. A 24, 3297–3302 (2007). 16. P. Vaveliuk, “Quantifying the paraxiality for laser beams from the M2-factor”, Opt. Lett. 34, 340–342 (2009). 17. R̃ψ=(cosψ−sinψ0sinψcosψ0001). 18. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw-Hill, 1953), pp. 501 and 658. 19. F. C. Frank, “On the theory of liquid crystals”, Farad. Soc. Disc. 25, 19–28 (1958). 20. A. Niv, Y. Gorodetski, V. Kleiner, and E. Hasman, “Topological spin-orbit interaction of light in anisotropic inhomogeneous subwavelength structures”, Opt. Lett. 33, 2910 (2008). 21. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondifracting optical wave fields”, Opt. Lett. 29, 44–46 (2004). 22. For a given q, the alternative choices ψ_0=0 and ψ_0=π∕2 generate two families of orthogonal curves with the same geometry, each of them associated with the corresponding coordinates at the local frame. For [q,0], the dielectric tensor in its respective local frame is diag(n_e^2,n_o^2,n_o^2), and, for [q,π∕2], it is diag(n_o^2,n_e^2,n_o^2). For any other ψ0(≠0,π∕2), ψ_0 also generates an identical family of curves, but rotated in ψ_0 regardless the x axis. There exists an exception: q=1. 23. K. Itõ and N. Sugakkai, Encyclopedic Dictionary of Mathematics (MIT Press, 1993), pp. 1727–1729. 24. C. Sátiro and F. Moraes, “Lensing effects in a nematic liquid crystal with topological defects”, Eur. J. Phys. E 20, 173–178 (2006).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6643c3d-f635-48d3-a642-922a4b2e595c
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublication.latestForDiscoveryb6643c3d-f635-48d3-a642-922a4b2e595c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martinez-Matos10libre.pdf
Size:
390.94 KB
Format:
Adobe Portable Document Format

Collections