Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The general theory of phase shifting algorithms

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorEstrada, Julio César
dc.contributor.authorServín Guirado, Manuel
dc.date.accessioned2023-06-20T03:35:23Z
dc.date.available2023-06-20T03:35:23Z
dc.date.issued2009-11-23
dc.description© 2009 Optical Society of America. We acknowledge the valuable support of the Mexican Science Council, CONACYT.
dc.description.abstractWe have been reporting several new techniques of analysis and synthesis applied to Phase Shifting Interferometry (PSI). These works are based upon the Frequency Transfer Function (FTF) and how this new tool of analysis and synthesis in PSI may be applied to obtain very general results, among them; rotational invariant spectrum; complex PSI algorithms synthesis based on simpler first and second order quadrature filters; more accurate formulae for estimating the detuning error; output-power phase noise estimation. We have made our cases exposing these aspects of PSI separately. Now in the light of a better understanding provided by our past works we present and expand in a more coherent and holistic way the general theory of PSI algorithms. We are also providing herein new material not reported before. These new results are on; a well defined way to combine PSI algorithms and recursive linear PSI algorithms to obtain resonant quadrature filters.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMexican Science Council, CONACYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22808
dc.identifier.doi10.1364/OE.17.021867
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.17.021867
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43973
dc.issue.number24
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final21881
dc.page.initial21867
dc.publisherThe Optical Society Of America
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordError-Compensating Algorithms
dc.subject.keywordInterferometry
dc.subject.keywordNoise
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleThe general theory of phase shifting algorithms
dc.typejournal article
dc.volume.number17
dcterms.references1. K. Freischlad, and C. L. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7(4), 542–551 (1990). 2. D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt. 36(31), 8098–8115 (1997). 3. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35(1), 51–60 (1996). 4. D. Malacara, M. Servín, and Z. Malacara, Interferogram analysis for Optical Testing, 2th ed., (Marcel Deker, 2003). 5. M. Servín, J. C. Estrada, and J. A. Quiroga, “Spectral analysis of phase shifting algorithms,” Opt. Express 17(19), 16423–16428 (2009). 6. J. G. Proakis, and D. G. Manolakis, Digital Signal Processing, 4th-ed., (Prentice Hall, 2007). 7. J. Schmit, and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34(19), 3610–3619 (1995). 8. J. F. Mosiño, M. Servín, J. C. Estrada, and J. A. Quiroga, “Phasorial analysis of detuning error in temporal phase shifting algorithms,” Opt. Express 17(7), 5618–5623 (2009). 9. M. Servín, J. C. Estrada, J. A. Quiroga, J. F. Mosiño, and M. Cywiak, “Noise in phase shifting interferometry,” Opt. Express 17(11), 8789–8794 (2009). 10. J. C. Estrada, M. Servín, and J. A. Quiroga, “Easy and straightforward construction of wideband phase-shifting algorithms for interferometry,” Opt. Lett. 34(4), 413–415 (2009). 11. K. G. Larkin, and B. F. Oreb, “Propagation of errors in different phase-shifting algorithms: a special property of the arctangent function,” presented at the SPIE International Symposium on Optical Applied Science and Engineering, San Diego, California, SPIE, 1755, 219–227 (1992). 12. F. G. Stremler, Introduction to Communications Systems, 3rd ed., (Addison-Wesley, 1990). 13. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses,” Appl. Opt. 13(11), 2693–2703 (1974). 14. K. Hibino, “Susceptibility of systematic error-compensating algorithms to random noise in phase-shifting interferometry,” Appl. Opt. 36(10), 2084–2093 (1997). 15. C. J. Morgan, “Least-squares estimation in phase-measurement interferometry,” Opt. Lett. 7(8), 368–370 (1982). 16. V. K. Madisetti, and D. B. Williams, eds., Digital Signal Processing Handbook, (CRC Press, IEEE Press, 1998).
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA28.pdf
Size:
227.16 KB
Format:
Adobe Portable Document Format

Collections