Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity

dc.contributor.authorFilippas, Stathis
dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T16:59:28Z
dc.date.available2023-06-20T16:59:28Z
dc.date.issued2000
dc.description.abstractWe consider the semilinear heat equation with critical power nonlinearity. Using formal. arguments based on matched asymptotic expansion techniques, we give a detailed description of radially symmetric sign-changing solutions, which blow-up at x = 0 and t = T < ∞, for space dimension N = 3,4,5,6. These solutions exhibit fast blow-up; i.e. they satisfy lim(t up arrowT)(T - t)(1/(p-1))u(0, t) = ∞. In contrast, radial solutions that are positive and decreasing behave as in the subcritical case for any N ≥ 3. This last result is extended in the case of exponential nonlinearity and N = 2.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16657
dc.identifier.doi10.1098/rspa.2000.0648
dc.identifier.issn1364-5021
dc.identifier.officialurlhttp://rspa.royalsocietypublishing.org/content/456/2004/2957.full.pdf+html
dc.identifier.relatedurlhttp://rspa.royalsocietypublishing.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57582
dc.journal.titleProceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences
dc.language.isoeng
dc.page.final2982
dc.page.initial2957
dc.publisherRoyal Society of London
dc.rights.accessRightsrestricted access
dc.subject.cdu536.2
dc.subject.cdu517.956.4
dc.subject.keywordMatched asymptotic expansions
dc.subject.keywordsemilinear heat equation
dc.subject.keywordblow-up
dc.subject.keywordcritical exponents
dc.subject.keywordsingularities
dc.subject.keyworddynamics
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleFast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity
dc.typejournal article
dc.volume.number456
dcterms.referencesAngenent, S. 1988 The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390, 79–96. Angenent, S. & Velázquez, J. J. L. 1995 Asymptotic shape of cusp singularities in curve shortening. Duke Math. Jl 77,71–100. Bernoff, A., Bertozzi, A. & Witelski, T. 1998 Axisymmetric surface diffusion dynamics and stability of self-similar pinchoff. J. Statist. Phys. 93, 725–776. Blythe, P. A. & Crighton, D. G. 1989 Shock generated ignition: the induction zone. Proc. R. Soc. Lond. A426, 189–209. Dold, J. W. 1985 Analysis of the early stage of thermal runaway. Q. JlMe ch. Appl. Math. 38, 361–387. Filippas, S. & Kohn, R. V. 1992 Refined asymptotics for the blow-up of ut−Δu = up. Commun. Pure Appl. Math. 45, 821–869. Eggers, J. 1997 Nonlinear dynamics and breakup of free surface flows. Rev. Mod. Phys. 69,865–929. Gage, M. & Hamilton, R. S. 1987 The heat equation shrinking convex plane curves. J. Diff. Geom. 26, 285–314. Galaktionov, V. A. & Posashkov, S. A. 1986 Application of new comparison theorems in the ivestigation of unbounded solutions of nonlinear parabolic equations. Diff. Eqns 22, 1165-1173. Giga, Y. & Kohn R. V. 1985 Asymptotically self similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38, 297–319. Giga, Y. & Kohn, R. V. 1987 Characterising blow-up using similarity variables. Indiana Univ.Math. Jl 36, 1–40. Giga, Y. & Kohn, R. V. 1989 Nondegeneracy of blow-up for semilinear heat equations. Commun. Pure Appl. Math. 42, 845–884. Gidas, B. & Spruck, J. 1981 Global and local behaviour of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598. Herrero, M. A. & Velázquez, J. J. L. 1994 Explosion des solutions d’equations paraboliques semilinéaires. C. R. Acad. Sci. Paris 319, 141–145. Herrero, M. A. & Velázquez, J. J. L. 1996 Singularity patterns in a chemotaxis model. Math. Ann. 306, 583–623. Herrero, M. A. & Velázquez, J. J. L. 1997 On the melting of ice balls. SIAM JlMath. Analysis 28, 1–32. Keller, H. B. & Segel, L. A. 1970 Initiation of slime mold aggregation viewed as an instability.J. Theor. Biol. 26, 399–415. Szego, G. 1978 Orthogonal polynomials, vol. 23. Providence, RI: American Mathematical Society. Velázquez, J. J. L. 1992 Higher dimensional blow-up for semilinear parabolic equations. Commun. PDE 17, 1567–1596. Velázquez, J. J. L. 1993 Classification of singularities for blowing up solutions in higher dimensions.Trans. Am. Math. Soc. 338, 441–464.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero23.pdf
Size:
383.35 KB
Format:
Adobe Portable Document Format

Collections