Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Nash images of Euclidean spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

In this work we characterize the subsets of Rn that are images of Nash maps f : Rm → Rn. We prove Shiota’s conjecture and show that a subset S ⊂ Rn is the image of a Nash map f : Rm → Rn if and only if S is semialgebraic, pure dimensional of dimension d ≤ m and there exists an analytic path α : [0, 1] → S whose image meets all the connected components of the set of regular points of S. Two remarkable consequences are the following: (1) pure dimensional irreducible semialgebraic sets of dimension d with arc-symmetric closure are Nash images of Rd; and (2) semialgebraic sets are projections of irreducible algebraic sets whose connected components are Nash diffeomorphic to Euclidean spaces.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections