Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The exact likelihood function for the vector ARMA model

dc.contributor.authorMauricio Arias, José Alberto
dc.date.accessioned2023-06-21T01:37:46Z
dc.date.available2023-06-21T01:37:46Z
dc.date.issued1993
dc.description.abstractThis paper implements in Fortran 77 a new algorithm which has the same purpose as algorithm AS 242 of Shea (1989), namely to compute the exact likelihood function of a vector ARMA model. The new algorithm turns out to be faster in many relevant cases and not appreciably slower in any. In addition to advantages offered by the algorithm of Shea (1989), including the calculation of an appropiate set of residuals, it also permits the automatic detection of noninvertible models as a byproduct. The Fortran 77 code presented here combines improved versions of the algorithms due to Ljung and Box (1979) and Hall and Nicholls (1980) with an algorithm of Kohn and Ansley (1982). The resulting procedure puts together a set of useful features which can only be found separately in other existing methods.
dc.description.abstractEn este trabajo se presenta la codificación en Fortran 77 de un nuevo algoritmo para evaluar la función de verosimilitud exacta de un modelo ARMA multivariante. Este algoritmo resulta significativamente más rápido que el SHEA (1982) en muchos casos, mientras que no es claramente más lento en ninguno. Además de proporcionar un vector de residuos apropiado, permite detectar, como subproducto, modelos no invertibles. El código es una combinación de los algoritmos de Ljung y Box (1979) y Hall y Nicholls (1980) mejorados, con un algoritmo de Kohn y Ansley (1982). Como resultado se obtiene un algoritmo con ciertas propiedades que sólo pueden encontrarse por separado en los procedimientos disponibles actualmente.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28779
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64200
dc.issue.number17
dc.language.isoeng
dc.page.total31
dc.publication.placeMadrid
dc.publisherFacultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.keywordVector ARMA model
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleThe exact likelihood function for the vector ARMA model
dc.typetechnical report
dc.volume.number1993
dcterms.referencesDennis, J.E. and Schnabel, R.B. (1983) Numerical Methods for Unconstrainded Optimization and Nonlinear Equations. New Jersey: Prentice-Hall. Hall, A.D. and Nicholls, D.F. (1980) The Evaluation of Exact Maximum Likelihood Estimates for VARMA Models. J. Statist. Comput. Simul., 10, 251-262. Kohn, R. and Ansley, C.F. (1982) A Note on Obtaining the Theoretical Autocovariances of an ARMA Process, J. Statist. Comput. Simul., 15, 273-283. Ljung, G.M. and Box, G.E.P. (1979) The Likelihood Function of Stationary Autoregressive-Moving Average Models, Biometrika, 66, 265-270. Martin, R.S. and Wilkinson, J.H. (1965) Symmetric Decomposition of Positive Definite Band Matrices, Num. Math., 7, 355-361. Mauricio, J.A. (1993) Exact Maxinmm Likelihood Estimation of Stationary Vector ARMA models, I.C.A.E., D.T. Nº 9316. Moler, C.B. (1972) Algorithm 423: Linear Equation Solver, Commun. Ass. Comput. Mach., 15, 274. Nicholls, D.F. and Hall, A.D. (1979) The Exact Likelihood Function of Multivariate Autoregressive-Moving Average Models, Biometrika, 66, 259-264. Shea, B.L. (1984), Maximum Likelibood Estimation of Multivariate ARMA Processes via the Kalman Filter. In Time Series Analysis: Theory and Practice (ed. O.D. Anderson), vol. 5, pp. 91-101, Amsterdam: North-Holland. Shea, B.L. (1989) Algorithm AS 242: The Exact Likelihood of a Vector Autoregressive-Moving Average Model, Appl. Statist., 38, 161-204.
dspace.entity.typePublication
relation.isAuthorOfPublicatione835cf57-9199-43c5-a77c-faea005cd3eb
relation.isAuthorOfPublication.latestForDiscoverye835cf57-9199-43c5-a77c-faea005cd3eb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9317.pdf
Size:
758.55 KB
Format:
Adobe Portable Document Format