Integrating Eye-Tracking and Artificial Intelligence for Quantitative Assessment of Visuocognitive Performance in Sports and Education

dc.contributor.authorPovedano Montero, Francisco Javier
dc.contributor.authorBernárdez Vilaboa, Ricardo
dc.contributor.authorTrillo, José Ramón
dc.contributor.authorGonzález Jiménez, Rut
dc.contributor.authorOtero Currás, Carla
dc.contributor.authorMartínez Florentín, Gema
dc.contributor.authorCedrún Sánchez, Juan Enrique
dc.date.accessioned2025-12-11T14:32:02Z
dc.date.available2025-12-11T14:32:02Z
dc.date.issued2025-11-27
dc.description.abstractBackground: Eye-tracking technology enables the objective quantification of oculomotor behavior, providing key insights into visuocognitive performance. This study presents a comparative analysis of visual attention patterns between rhythmic gymnasts and school-aged students using an optical eye-tracking system combined with machine learning algorithms. Methods: Eye movement data were recorded during controlled visual tasks using the DIVE system (sampling rate: 120 Hz). Spatiotemporal metrics—including fixation duration, saccadic amplitude, and gaze entropy—were extracted and used as input features for supervised models: Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Decision Tree (CART), Random Forest, XGBoost, and a one-dimensional Convolutional Neural Network (1D-CNN). Data were divided according to a hold-out scheme (70/30) and evaluated using accuracy, F1-macro score, and Receiver Operating Characteristic (ROC) curves. Results: XGBoost achieved the best performance (accuracy = 94.6%; F1-macro = 0.945), followed by Random Forest (accuracy = 94.0%; F1-macro = 0.937). The neural network showed intermediate performance (accuracy = 89.3%; F1-macro = 0.888), whereas SVM and k-NN exhibited lower values. Gymnasts demonstrated more stable and goal-directed gaze patterns than students, reflecting greater efficiency in visuomotor control. Conclusions: Integrating eye-tracking with artificial intelligence provides a robust framework for the quantitative assessment of visuocognitive performance. Ensemble algorithms demonstrated high discriminative power, while neural networks require further optimization. This approach shows promising applications in sports science, cognitive diagnostics, and the development of adaptive human–machine interfaces.
dc.description.departmentDepto. de Optometría y Visión
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationPovedano-Montero, F.J.; Bernardez-Vilaboa, R.; Trillo, J.R.; González-Jiménez, R.; Otero-Currás, C.; Martínez-Florentín, G.; Cedrún-Sánchez, J.E. Integrating Eye-Tracking and Artificial Intelligence for Quantitative Assessment of Visuocognitive Performance in Sports and Education. Photonics 2025, 12, 1167. https://doi.org/10.3390/photonics12121167
dc.identifier.doi10.3390/photonics12121167
dc.identifier.issn2304-6732
dc.identifier.officialurlhttps://doi.org/10.3390/photonics12121167
dc.identifier.urihttps://hdl.handle.net/20.500.14352/128777
dc.issue.number1167
dc.journal.titlePhotonics
dc.language.isoeng
dc.page.final16
dc.page.initial1
dc.publisherMDPI
dc.rightsAttribution-ShareAlike 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.cdu57
dc.subject.cdu60
dc.subject.cdu617.7
dc.subject.keywordEye-tracking
dc.subject.keywordMachine learning
dc.subject.keywordOculomotor function
dc.subject.keywordRhythmic gymnastics
dc.subject.keywordVisual attention
dc.subject.ucmCiencias Biomédicas
dc.subject.ucmCiencias
dc.subject.unesco32 Ciencias Médicas
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleIntegrating Eye-Tracking and Artificial Intelligence for Quantitative Assessment of Visuocognitive Performance in Sports and Education
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication5bdc7244-5b4c-404e-98cc-79ae9cc2fa75
relation.isAuthorOfPublicatione69620c1-3c73-4f49-bad6-627de5687b13
relation.isAuthorOfPublicationc9b2072d-b009-48c0-a6dd-57f1f9e7cb15
relation.isAuthorOfPublication49c6853b-69f8-4a0a-b02a-50bebc1c71a6
relation.isAuthorOfPublication.latestForDiscovery5bdc7244-5b4c-404e-98cc-79ae9cc2fa75

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Integrating_Eye_Tracking.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format

Collections