Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Finding zeros of the Riemann zeta function by periodic driving of cold atoms

dc.contributor.authorCreffield, Charles
dc.contributor.authorSierra, G.
dc.date.accessioned2023-06-18T06:46:21Z
dc.date.available2023-06-18T06:46:21Z
dc.date.issued2015-06-08
dc.description©2015 American Physical Society. The authors thank Michael Berry for stimulating discussions. C.E.C. was supported by the Spanish MINECO through Grants No. FIS2010-21372 and No. FIS2013-41716-P, and G.S. by Grant No. FIS2012-33642, QUITEMAD, and the Severo Ochoa Programme under Grant SEV-2012-0249.
dc.description.abstractThe Riemann hypothesis, which states that the nontrivial zeros of the Riemann zeta function all lie on a certain line in the complex plane, is one of the most important unresolved problems in mathematics. We propose here an approach to finding a physical system to study the Riemann zeros, which is based on applying a time-periodic driving field. This driving allows us to tune the quasienergies of the system (the analog of the eigenenergies for static systems), so that they are directly governed by the zeta function. We further show by numerical simulations that this allows the Riemann zeros to be measured in currently accessible cold- atom experiments.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMINECO, Spain
dc.description.sponsorshipSevero Ochoa Programme
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32916
dc.identifier.doi10.1103/PhysRevA.91.063608
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.91.063608
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24123
dc.issue.number6
dc.journal.titlePhysical review A
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2010-21372
dc.relation.projectIDFIS2013-41716-P
dc.relation.projectIDFIS2012-33642
dc.relation.projectIDQUITEMAD
dc.relation.projectIDSEV-2012-0249
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordOptics
dc.subject.keywordPhysics
dc.subject.keywordAtomic
dc.subject.keywordMolecular & Chemical
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleFinding zeros of the Riemann zeta function by periodic driving of cold atoms
dc.typejournal article
dc.volume.number91
dcterms.references[1] G. Sierra, A Physics Pathway to the Riemann Hypothesis, in Mathematical Physics and Field theory. Julio Abad, in Memoriam., edited by M. Asorey, J. V. Garcia-Esteve, M. F. Rañada, and J. Sesma (University of Zaragoza Press, Zaragoza, 2009), pp. 383–390; G. Sierra, arXiv:1012.4264. [2] D. Schumayer and D. A. W. Hutchinson, Rev. Mod. Phys. 83, 307 (2011). [3] H. L. Montgomery, Proc. Symp. Pure Math. 24, 181 (1973). [4] A. M. Odlyzko, Math. Comput. 48, 273 (1987). [5] M. V. Berry, in Quantum Chaos and Statistical Nuclear Physics, edited by T. H. Seligman and H. Nishioka, Springer Lecture Notes in Physics Vol. 263, p. 1 (Springer, New York, 1986). [6] J. P. Keating, in Supersymmetry and Trace Formulae: Chaos and Disorder, edited by I. V. erner et al.(Kluwer Academic/Plenum Publishers, New York, 1999), pp. 1–5. [7] B. van der Pol, Bull. Am. Math. Soc. 53, 976 (1947). [8] M. V. Berry, J. Phys. A: Math. Theor. 45, 302001 (2012). [9] C. Feiler and W. P. Schleich, New J. Phys. 15, 063009 (2013). [10] G. Polya, ´ Acta Math. 48, 305 (1926). [11] H. M. Edwards, Riemann’s Zeta Function (Academic Press, New York, 1974). [12] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991). [13] M. Grifoni and P. Hanggi, ¨ Phys. Rep. 304, 229 (1998). [14] C. E. Creffield, Phys. Rev. B 67, 165301 (2003). [15] J. H. Shirley, Phys. Rev. 138, B979 (1965). [16] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007). [17] E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, and M. K. Oberthaler, Phys. Rev. Lett. 100, 190405 (2008). [18] A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. A 79, 013611 (2009). [19] Equation (4) contains a extra factor of four as compared with a similar expression appearing in Ref. [20] in order to agree with the original expression used by Pólya in Ref. [ 10]. [20] E. C. Titchmarsh, The Theory of the Riemann Zeta Function (Oxford University Press, Oxford, 1986). [21] G. Sierra and J. Rodr´ıguez-Laguna, Phys. Rev. Lett. 106, 200201 (2011). [22] G. Sierra, J. Phys. A: Math. Theor. 47, 325204 (2014). [23] Since we employ the relation F(t) = cos_(−1) φ(t), we clearly require |φ(t)|≤ 1 for all t. It can be shown that a necessary and sufficient condition for this is a^2 < x, where x and a parametrize the modified Bessel function (4). For the case we are interested in, a = 9/4 and x = 2π (e.g., 2.25 < 2.50), the relation a < √x is indeed satisfied. [24] C. E. Creffield, F. Sols, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. A 82, 035601 (2010). [25] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014). [26] A. M. Odlyzko, Numer. Algorithms 25, 293 (2000).
dspace.entity.typePublication
relation.isAuthorOfPublication3b58cb19-3165-4b80-a65d-1e03b90ebf64
relation.isAuthorOfPublication.latestForDiscovery3b58cb19-3165-4b80-a65d-1e03b90ebf64

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Creffield C 32 LIBRE.pdf
Size:
490.25 KB
Format:
Adobe Portable Document Format

Collections