Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Phonon softening and dispersion in the 1D Holstein model of spinless fermions

dc.contributor.authorCreffield, Charles
dc.contributor.authorSangiovanni, G.
dc.contributor.authorCapone, M.
dc.date.accessioned2023-06-20T11:00:21Z
dc.date.available2023-06-20T11:00:21Z
dc.date.issued2005-03
dc.description© Springer. We thank C. Castellani and S. Ciuchi for valuable discussions. We also acknowledge Italian MIUR Cofin2003 for financial support.
dc.description.abstractWe investigate the effect of electron-phonon interaction on the phononic properties in the onedimensional half-filled Holstein model of spinless fermions. By means of determinantal Quantum Monte Carlo simulation we show that the behavior of the phonon dynamics gives a clear signal of the transition to a charge-ordered phase, and the phase diagram obtained in this way is in excellent agreement with previous DMRG results. By analyzing the phonon propagator we extract the renormalized phonon frequency, and study how it first softens as the transition is approached and then subsequently hardens in the charge-ordered phase. We then show how anharmonic features develop in the phonon propagator, and how the interaction induces a sizable dispersion of the dressed phonon in the non-adiabatic regime.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMIUR. Italy
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33582
dc.identifier.doi10.1140/epjb/e2005-00112-9
dc.identifier.issn1434-6028
dc.identifier.officialurlhttp://dx.doi.org/10.1140/epjb/e2005-00112-9
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51585
dc.issue.number2
dc.journal.titleEuropean physical journal B
dc.language.isoeng
dc.page.final181
dc.page.initial175
dc.publisherSpringer
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordSu-schrieffer-heeger
dc.subject.keywordQuantum monte-carlo
dc.subject.keywordOptical-obsorption
dc.subject.keywordMaximum-entropy
dc.subject.keywordPhase-diagram
dc.subject.keywordSmall-polaron
dc.subject.keywordElectron
dc.subject.keywordSuperconductors
dc.subject.keywordPerovskites
dc.subject.keywordSystems
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titlePhonon softening and dispersion in the 1D Holstein model of spinless fermions
dc.typejournal article
dc.volume.number44
dcterms.references[1] J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, Nature 386, 256 (1997); A. J. Millis, ibid. 392, 147 (1998); M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001). [2] Organic Conductors edited by J.-P. Farges, (Marcel Dekker, New York, 1994). [3] M. Matus, H. Kuzmany, and E. Sohmen, Phys. Rev. Lett. 68, 2822 (1992); K. Harigaya, Phys. Rev. B 45, 13676 (1992); B. Friedman, ibid. 45, 1454 (1992); W. M. You, C. L. Wang, F. C. Zhang, and Z. B. Su, ibid. 47, 4765 (1993). [4] Guo-Meng-Zhao, M. B. Hunt, H. Keller, and K. A. Muller, Nature 385, 236 (1997); A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, ibid. 412, 510 (2001); R. J. McQueeney, J. L. Sarrao, P. G. Pagliuso, P. W. Stephens, and R. Osborn, Phys. Rev. Lett. 87 77001 (2001). [5] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Phys. Rev. Lett. 86, 4656 (2001); P. Postorino, A. Congeduti, P. Dore, A. Nucara, A. Bianconi, D. Di Castro, S. De Negri, and A. Saccone, Phys. Rev. B 65, 020507R (2002). [6] M. Capone, W. Stephan and M. Grilli, Phys. Rev. B 56, 4484 (1997). [7] Robert J. Bursill, Ross H. McKenzie and Chris J. Hamer, Phys. Rev. Lett 80, 5607 (1998). [8] Jorge E. Hirsch and Eduardo Fradkin, Phys. Rev. B 27, 4302 (1983). [9] A. Weiße and H. Fehske, Phys. Rev. B 58, 13526 (1998). [10] Ross H. McKenzie, C. J. Hamer and D. W. Murray, Phys. Rev. B53, 9676 (1996). [11] Zhiguo L¨u, Qin Wang, and Hang Zheng, Phys. Rev. B 69, 134304 (2004). [12] C. A. Perroni, V. Cataudella, G. De Filippis, G. Iadonisi, V. Marigliano Ramaglia, and F. Ventriglia, Phys. Rev. B 67, 214301 (2003). [13] S. Sykora, A. Huebsch, K. W. Becker, G. Wellein, and H. Fehske, Phys. Rev. B 71, 045112 (2005). [14] Martin Hohenadler, Markus Aichhorn, and Wolfgang von der Linden, Phys. Rev. B 68, 184304 (2003). [15] R. Blankenbecler, D. J. Scalapino and R. L. Sugar, Phys. Rev. D 24, 2278 (1981). [16] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys. Rev. B 44, 6011 (1991). [17] R. K. Bryan, Eur. Bio. J. 18, 165 (1990). [18] C. E. Creffield, E. G. Klepfish, E. R. Pike and S. Sarkar, Phys. Rev. Lett. 75, 517 (1995). [19] L. Boeri, G. B. Bachelet, E. Cappelluti and L. Pietronero, Phys. Rev. B 65, 214501 (2002). [20] A. S. Alexandrov, V. V. Kabanov and D. K. Ray, Phys. Rev. B 49, 9915 (1994). [21] As we do not use an explicitly symmetric form for the electron-phonon interaction term in Eq.1 (i.e. we use gqn instead of gq (n − hni)), this bimodal distribution is not symmetric about the origin, instead having an overall shift of –q_0. [22] M. Capone and S. Ciuchi, Phys. Rev. B 65, 104409 (2002). [23] M. Capone and S. Ciuchi, Phys. Rev. Lett. 91, 186405 (2003).
dspace.entity.typePublication
relation.isAuthorOfPublication3b58cb19-3165-4b80-a65d-1e03b90ebf64
relation.isAuthorOfPublication.latestForDiscovery3b58cb19-3165-4b80-a65d-1e03b90ebf64

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Creffield C 19 PREPRINT.pdf
Size:
209.72 KB
Format:
Adobe Portable Document Format

Collections