Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rapid thermal annealing effects on the structural properties and density of defects in SiO2 and SiNx : H films deposited by electron cyclotron resonance

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T19:06:22Z
dc.date.available2023-06-20T19:06:22Z
dc.date.issued2000-02-01
dc.description© American Institute of Physics. The authors acknowledge C. A. I. de Implantación Iónica (U. C. M.) for technical support and C. A. I. de Espectroscopía (U. C. M.) for availability of the FTIR spectrometer. The work has been financed by the CICYT (Spain) under Contract No. TIC 98/0740.
dc.description.abstractThe effect of rapid thermal annealing processes on the properties of SiO2.0 and SiN1.55 films was studied. The films were deposited at room temperature from N-2 and SiH4 gas mixtures, and N-2, O-2, and SiH4 gas mixtures, respectively, using the electron cyclotron resonance technique. The films were characterized by Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy. According to the FTIR characterization, the SiO2.0 films show continuous stress relaxation for annealing temperatures between 600 and 1000 degrees C. The properties of the films annealed at 900-1000 degrees C are comparable to those of thermally grown ones. The density of defects shows a minimum value for annealing temperatures around 300-400 degrees C, which is tentatively attributed to the passivation of the well-known E' center Si dangling bonds due to the formation of Si-H bonds. A very low density of defects (5 x 10(16) cm(-3)) is observed over the whole annealing temperature range. For the SiN1.55 films, the highest structural order is achieved for annealing temperatures of 900 degrees C. For higher temperatures, there is a significant release of H from N-H bonds without any subsequent Si-N bond healing, which results in degradation of the structural properties of the film. A minimum in the density of defects is observed for annealing temperatures of 600 degrees C. The behavior of the density of defects is governed by the presence of non-bonded H and Si-H bonds below the IR detection limit. (C) 2000 American Institute of Physics. [S0021-8979(00)05903-X].
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26838
dc.identifier.doi10.1063/1.371996
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.371996
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59250
dc.issue.number3
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final1192
dc.page.initial1187
dc.publisherAmerican Institute of Physics
dc.relation.projectIDTIC 98/0740
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordSilicon Dioxide Films
dc.subject.keywordInsulator-Semiconductor Devices
dc.subject.keywordParamagnetic Point-Defects
dc.subject.keywordLow-Temperature Deposition
dc.subject.keywordNitride Thin-Films
dc.subject.keywordMicrowave Plasmas
dc.subject.keywordRoom-Temperature
dc.subject.keywordOxynitride Films
dc.subject.keywordOxide Films.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleRapid thermal annealing effects on the structural properties and density of defects in SiO2 and SiNx : H films deposited by electron cyclotron resonance
dc.typejournal article
dc.volume.number87
dcterms.references1) Y. Ma and G. Lukovsky, J. Vac. Sci. Technol. B 12, 2504 (1994). 2) Y. Ma, T. Yasuda, and G. Lukovsky, J. Vac. Sci. Technol. B 11, 1533 (1993). 3) D. Landheer, Y. Tao, J. E. Hulse, T. Quance, and D.-X. Xu, J. Electrochem. Soc. 143, 1681 (1996). 4) S. V. Hattangady, H. Niimi, and G. Lucovsky, J. Vac. Sci. Technol. A 14, 3017 (1996). 5) E. Redondo, N. Blanco, I. Mártil, and G. González-Díaz, Appl. Phys. Lett. 74, 991 (1999). 6) D. G. Park, M. Tao, D. Li, A. E. Botchkarev, Z. Fan, Z. Wang, S. N. Mohammad, A. Rockett, J. R. Abelson, H. Morkoc¸, A. R. Heyd, and S. A. Alterovitz, J. Vac. Sci. Technol. B 14, 2674 (1996). 7) P. K. Shufflebotham, D. J. Thomson, and H. C. Card, J. Appl. Phys. 64, 4398 (1988). 8) A. Popov, J. Vac. Sci. Technol. A 7, 894 (1989). 9) T. T. Chau, S. R. Mejia, and K. C. Kao, J. Vac. Sci. Technol. B 10, 2170 (1992). 10) F. L. Martínez, Á. del Prado, D. Bravo, F. López, I. Mártil, and G. González-Díaz, J. Vac. Sci. Technol. A 17, 1280 (1999). 11) G. Lucovsky, H. Niimi, Y. Wu, C. R. Parker, and J. R. Hauser, J. Vac. Sci. Technol. A 16, 1721 (1998). 12) D. Landheer, J. E. Hulse, and T. Quance, Thin Solid Films 293, 52 (1997). 13) N. Bhat, A. W. Wang, and K. C. Saraswat, IEEE Trans. Electron Devices 46, 63 (1999). 14) A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, J. Vac. Sci. Technol. A 15, 377 (1997). 15) W. L. Warren, J. Kanicki, F. C. Rong, and E. H. Poindexter, J. Electrochem. Soc. 139, 880 (1992). 16) W. L. Warren, E. H. Poindexter, M. Offenberg, W. Müller-Warmuth, J. Electrochem. Soc. 139, 872 (1992). 17) E. H. Poindexter, G. J. Gerardi, M.-E. Rueckel, P. J. Caplan, N. M. Johnson, and D. K. Biegelsen, J. Appl. Phys. 56, 2844 (1984). 18) S. García, J. M. Martín, M. Fernández, I. Mártil, and G. González-Dıíz, Philos. Mag. B 73, 487 (1996). 19) F. L. Martínez, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Non-Cryst. Solids 227-230, 523 (1998). 20) Á. del Prado, I. Mártil, M. Fernández, and G. González-Díaz, Thin Solid Films 343–344, 432 (1999). 21) W. A. Lanford and M. J. Rand, J. Appl. Phys. 49, 2473 (1978). 22) P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovski, J. Vac. Sci. Technol. A 4, 689 (1986). 23) B.-R. Zhang, Z. Yu, G. J. Collins, T. Hwang, and W. H. Ritchic, J. Vac. Sci. Technol. A 7, 176 (1989). 24) T. V. Herak, T. T. Chau, D. J. Thomson, S. R. Mejia, D. A. Buchanan, and K. C. Kao, J. Appl. Phys. 65, 2457 (1989). 25) J. T. Fitch, S. S. Kim, and G. Lucovsky, J. Vac. Sci. Technol. A 8, 1871 (1990). 26) W. K. Choi, C. K. Choo, and Y. F. Lu, J. Appl. Phys. 80, 5837 (1996). 27) Á. del Prado, F. L. Martínez, M. Fernández, I. Mártil, and G. González-Díaz, J. Vac. Sci. Technol. A 17, 1263 (1999). 28) D. V. Tsu, G. Lucovsky, and M. J. Mantini, Phys. Rev. B 33, 7069 (1986). 29) Z. Lu, P. Santos-Filho, G. Stevens, M. J. Williams, and G. Lucovsky, J. Vac. Sci. Technol. A 13, 607 (1995). 30) R. C. Budhani, R. F. Bunshah, and P. A. Flinn, Appl. Phys. Lett. 52, 284 (1988). 31) S. García, D. Bravo, M. Fernández, I. Mártil, and F. J. López, Appl. Phys. Lett. 67, 3263 (1995). 32) D. Jousse, J. Kanicki, D. T. Krick, and P. M. Lenahan, Appl. Phys. Lett. 52, 445 (1988). 33) J. K. Cramer and S. P. Murarka, J. Appl. Phys. 77, 3048 (1995).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscovery21e27519-52b3-488f-9a2a-b4851af89a71

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,79libre.pdf
Size:
238.57 KB
Format:
Adobe Portable Document Format

Collections